论文标题

MV-HAN:基于混合细心网络的多视图学习模型,用于大规模内容建议

MV-HAN: A Hybrid Attentive Networks based Multi-View Learning Model for Large-scale Contents Recommendation

论文作者

Fan, Ge, Zhang, Chaoyun, Wang, Kai, Chen, Junyang

论文摘要

工业推荐系统通常采用多源数据来提高建议质量,同时有效共享不同数据源之间的信息仍然是一个挑战。在本文中,我们引入了一种新型的多视图方法,其中包括混合细心网络(MV-HAN),以在推荐系统的匹配阶段进行目录检索。提出的模型可以从各种输入特征中实现高阶特征交互,同时有效地在不同类型之间传输知识。通过采用良好的参数共享策略,MV-HAN可以显着提高稀疏类型的检索性能。设计的MV-Han通过将不同类型的用户和内容映射到相同的功能空间中,从而从两位售货员模型中继承了在线服务中的效率优势。这可以通过大约最近的邻居算法快速检索相似内容。我们在几个工业数据集上进行了离线实验,表明拟议的MV-Han在内容检索任务上的表现明显优于基准。重要的是,MV-HAN部署在现实世界中的匹配系统中。在线A/B测试结果表明,所提出的方法可以显着提高建议质量。

Industrial recommender systems usually employ multi-source data to improve the recommendation quality, while effectively sharing information between different data sources remain a challenge. In this paper, we introduce a novel Multi-View Approach with Hybrid Attentive Networks (MV-HAN) for contents retrieval at the matching stage of recommender systems. The proposed model enables high-order feature interaction from various input features while effectively transferring knowledge between different types. By employing a well-placed parameters sharing strategy, the MV-HAN substantially improves the retrieval performance in sparse types. The designed MV-HAN inherits the efficiency advantages in the online service from the two-tower model, by mapping users and contents of different types into the same features space. This enables fast retrieval of similar contents with an approximate nearest neighbor algorithm. We conduct offline experiments on several industrial datasets, demonstrating that the proposed MV-HAN significantly outperforms baselines on the content retrieval tasks. Importantly, the MV-HAN is deployed in a real-world matching system. Online A/B test results show that the proposed method can significantly improve the quality of recommendations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源