论文标题
WTE2 van der waals膜中等离子体极化子的可调光学拓扑转换
Tunable optical topological transitions of plasmon polaritons in WTe2 van der Waals films
论文作者
论文摘要
天然现有的平面双层偏振子和相关的光学拓扑转换,避免了纳米结构以实现双曲线,可以在人工跨面中胜过其对应物。这种等离子体极化剂很少见,但是最近在WTE2 van der waals薄膜中揭示了实验。与声子极性子不同,双曲线等离子体极性子源自自由载体drude响应和带间跃迁的相互作用,这有望良好的内在可调性。然而,尚未实现可调的平面双曲线等离子体极化及其在天然材料中椭圆形拓扑的光学拓扑过渡到椭圆形拓扑。在这里,我们证明了通过浓度和温度调整光学拓扑转换。光学拓扑过渡能量在较大范围内调整,频率从429 cm-1(23.3微米)的纯WTE2(23.3微米)到10 k的50%mo兴奋剂水平的270 cm-1(37.0微米)。令人惊讶的是,偏度丝带中的局部表面等离子体共振显示出异常的极化依赖性,可以准确地表现出其拓扑结构,这提供了一种可靠的手段,可以通过远场技术跟踪拓扑。我们的结果为可重新配置的光子设备开辟了一条途径,能够通过基于各向异性天然材料的低对称性等离子体纳米型的低对称性等离子体纳米光子剂来铺平载液,聚焦和路由等电源。
Naturally existing in-plane hyperbolic polaritons and the associated optical topological transitions, which avoid the nano-structuring to achieve hyperbolicity, can outperform their counterparts in artificial metasurfaces. Such plasmon polaritons are rare, but experimentally revealed recently in WTe2 van der Waals thin films. Different from phonon polaritons, hyperbolic plasmon polaritons originate from the interplay of free carrier Drude response and interband transitions, which promise good intrinsic tunability. However, tunable in-plane hyperbolic plasmon polariton and its optical topological transition of the isofrequency contours to the elliptic topology in a natural material have not been realized. Here we demonstrate the tuning of the optical topological transition through Mo-doping and temperature. The optical topological transition energy is tuned over a wide range, with frequencies ranging from 429 cm-1 (23.3 microns) for pure WTe2 to 270 cm-1 (37.0 microns) at the 50% Mo-doping level at 10 K. Moreover, the temperature-induced blueshift of the optical topological transition energy is also revealed, enabling active and reversible tuning. Surprisingly, the localized surface plasmon resonance in skew ribbons shows unusual polarization dependence, accurately manifesting its topology, which renders a reliable means to track the topology with far-field techniques. Our results open an avenue for reconfigurable photonic devices capable of plasmon polariton steering, such as canaling, focusing and routing, and pave a way for low-symmetry plasmonic nanophotonics based on anisotropic natural materials.