论文标题

星形转换器:人类动作识别的时空交叉注意变压器

STAR-Transformer: A Spatio-temporal Cross Attention Transformer for Human Action Recognition

论文作者

Ahn, Dasom, Kim, Sangwon, Hong, Hyunsu, Ko, Byoung Chul

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

In action recognition, although the combination of spatio-temporal videos and skeleton features can improve the recognition performance, a separate model and balancing feature representation for cross-modal data are required. To solve these problems, we propose Spatio-TemporAl cRoss (STAR)-transformer, which can effectively represent two cross-modal features as a recognizable vector. First, from the input video and skeleton sequence, video frames are output as global grid tokens and skeletons are output as joint map tokens, respectively. These tokens are then aggregated into multi-class tokens and input into STAR-transformer. The STAR-transformer encoder layer consists of a full self-attention (FAttn) module and a proposed zigzag spatio-temporal attention (ZAttn) module. Similarly, the continuous decoder consists of a FAttn module and a proposed binary spatio-temporal attention (BAttn) module. STAR-transformer learns an efficient multi-feature representation of the spatio-temporal features by properly arranging pairings of the FAttn, ZAttn, and BAttn modules. Experimental results on the Penn-Action, NTU RGB+D 60, and 120 datasets show that the proposed method achieves a promising improvement in performance in comparison to previous state-of-the-art methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源