论文标题
在封闭的爱因斯坦歧管上具有恒定Q展形的共形度量的独特性
Uniqueness of conformal metrics with constant Q-curvature on closed Einstein manifolds
论文作者
论文摘要
在平滑的,封闭的Riemannian歧管$(M,G)的尺寸$ n \ ge3 $中,标量曲率为正,而不是标准球体的同轴差异,我们证明,$ g $ g $的唯一Q-curvevator n offer q-curvevature v $ g $ n offer 4 cultrics 4是指标$λg$ cum cum cum cumpant $λ> 0 $ 0。
On a smooth, closed Riemannian manifold $(M,g)$ of dimension $n\ge3$ with positive scalar curvature and not conformally diffeomorphic to the standard sphere, we prove that the only conformal metrics to $g$ with constant Q-curvature of order 4 are the metrics $λg$ with $λ>0$ constant.