论文标题
Tractoscr:一种新型监督的对比回归框架,用于使用多站点统一扩散MRI拖拉机预测神经认知度量
TractoSCR: A Novel Supervised Contrastive Regression Framework for Prediction of Neurocognitive Measures Using Multi-Site Harmonized Diffusion MRI Tractography
论文作者
论文摘要
基于神经成像的神经认知度量预测对于研究大脑的结构与认知功能的关系很有价值。但是,使用流行线性回归模型的预测准确性相对较低。我们提出了一种新型的深层回归方法,即拖拉,该方法允许使用扩散MRI拖拉术在回归任务中进行对比度学习的全面监督。 TractoSCR通过使用连续回归标签(即神经认知得分)之间的绝对差来确定正面和负面对的对比度学习。我们应用TractoSCR分析一个大规模数据集,包括来自青少年脑认知发展(ABCD)研究中8735名参与者的多站点统一扩散MRI和神经认知数据。我们使用白质拖拉术将白质片段化到纤维簇中提取白质微观结构措施。使用这些措施,我们预测了与高阶认知领域有关的三个分数(一般认知能力,执行功能和学习/记忆)。为了识别重要的纤维簇以预测这些神经认知得分,我们提出了用于高维数据的置换特征重要性方法。我们发现,与其他最新方法相比,TractoSCR提高了神经认知评分预测的准确性。我们发现,最预测的纤维簇主要位于浅表白质和投影区内,尤其是浅表额叶白质和纹状体额叶连接。总体而言,我们的结果证明了对比度表示方法的回归方法,特别是用于改善基于神经影像学的高阶认知能力的预测。
Neuroimaging-based prediction of neurocognitive measures is valuable for studying how the brain's structure relates to cognitive function. However, the accuracy of prediction using popular linear regression models is relatively low. We propose a novel deep regression method, namely TractoSCR, that allows full supervision for contrastive learning in regression tasks using diffusion MRI tractography. TractoSCR performs supervised contrastive learning by using the absolute difference between continuous regression labels (i.e. neurocognitive scores) to determine positive and negative pairs. We apply TractoSCR to analyze a large-scale dataset including multi-site harmonized diffusion MRI and neurocognitive data from 8735 participants in the Adolescent Brain Cognitive Development (ABCD) Study. We extract white matter microstructural measures using a fine parcellation of white matter tractography into fiber clusters. Using these measures, we predict three scores related to domains of higher-order cognition (general cognitive ability, executive function, and learning/memory). To identify important fiber clusters for prediction of these neurocognitive scores, we propose a permutation feature importance method for high-dimensional data. We find that TractoSCR improves the accuracy of neurocognitive score prediction compared to other state-of-the-art methods. We find that the most predictive fiber clusters are predominantly located within the superficial white matter and projection tracts, particularly the superficial frontal white matter and striato-frontal connections. Overall, our results demonstrate the utility of contrastive representation learning methods for regression, and in particular for improving neuroimaging-based prediction of higher-order cognitive abilities.