论文标题

摊销了Cryo-EM中异质重建的推断

Amortized Inference for Heterogeneous Reconstruction in Cryo-EM

论文作者

Levy, Axel, Wetzstein, Gordon, Martel, Julien, Poitevin, Frederic, Zhong, Ellen D.

论文摘要

冷冻电子显微镜(Cryo-EM)是一种成像方式,可为蛋白质和其他生命的构建基块的动力学提供独特的见解。共同估计姿势,3D结构和构象异质性的算法挑战,以计算上有效的方式从数百万嘈杂和随机定向的2D投影中产生的生物分子的挑战仍然没有解决。我们的方法Cryofire在摊销框架中以未知的姿势进行了从头开始的异质重建,从而避免了姿势搜索的计算昂贵的步骤,同时启用构象异质性的分析。姿势和构象由编码器共同估算,而基于物理的解码器将图像汇总为构象空间的隐式神经表示。我们表明,我们的方法可以在包含数百万张图像的数据集上提供一个数量级加速度,而不会丢失准确性。我们验证姿势和构象的联合估计可以在数据集的大小上摊销。我们第一次证明一种摊销方法可以从实验数据集中提取可解释的动态信息。

Cryo-electron microscopy (cryo-EM) is an imaging modality that provides unique insights into the dynamics of proteins and other building blocks of life. The algorithmic challenge of jointly estimating the poses, 3D structure, and conformational heterogeneity of a biomolecule from millions of noisy and randomly oriented 2D projections in a computationally efficient manner, however, remains unsolved. Our method, cryoFIRE, performs ab initio heterogeneous reconstruction with unknown poses in an amortized framework, thereby avoiding the computationally expensive step of pose search while enabling the analysis of conformational heterogeneity. Poses and conformation are jointly estimated by an encoder while a physics-based decoder aggregates the images into an implicit neural representation of the conformational space. We show that our method can provide one order of magnitude speedup on datasets containing millions of images without any loss of accuracy. We validate that the joint estimation of poses and conformations can be amortized over the size of the dataset. For the first time, we prove that an amortized method can extract interpretable dynamic information from experimental datasets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源