论文标题

令人沮丧的文本流的情感分析:使用情感词典产生高质量的情感弧

Frustratingly Easy Sentiment Analysis of Text Streams: Generating High-Quality Emotion Arcs Using Emotion Lexicons

论文作者

Teodorescu, Daniela, Mohammad, Saif M.

论文摘要

自动产生的情感弧线(捕获个人或人群随着时间的流逝)被广泛用于行业和研究中。但是,在评估生成的弧线方面几乎没有工作。这部分是由于难以建立真实的(黄金)情感弧。我们的工作首次系统地和定量评估自动产生的情感弧。我们还比较了产生情感弧的两种常见方法:机器学习(ML)模型和仅词典(词汇)方法。使用多种不同的数据集,我们系统地研究了情感词典的质量与可以与之产生的情感弧的质量之间的关系。我们还研究实例级情感检测系统(例如ML模型)的质量与可以与之产生的情感弧的质量之间的关系。我们表明,尽管在实例水平上明显差,但雷克萨方法在通过汇总数百个实例的信息来产生情感弧方面非常准确。这对商业发展以及心理学,公共卫生,数字人文科学的研究具有广泛的影响。重视简单的可解释方法并消除对特定领域的培训数据,编程专业知识和高碳 - 脚本印刷模型的需求。

Automatically generated emotion arcs -- that capture how an individual or a population feels over time -- are widely used in industry and research. However, there is little work on evaluating the generated arcs. This is in part due to the difficulty of establishing the true (gold) emotion arc. Our work, for the first time, systematically and quantitatively evaluates automatically generated emotion arcs. We also compare two common ways of generating emotion arcs: Machine-Learning (ML) models and Lexicon-Only (LexO) methods. Using a number of diverse datasets, we systematically study the relationship between the quality of an emotion lexicon and the quality of the emotion arc that can be generated with it. We also study the relationship between the quality of an instance-level emotion detection system (say from an ML model) and the quality of emotion arcs that can be generated with it. We show that despite being markedly poor at instance level, LexO methods are highly accurate at generating emotion arcs by aggregating information from hundreds of instances. This has wide-spread implications for commercial development, as well as research in psychology, public health, digital humanities, etc. that values simple interpretable methods and disprefers the need for domain-specific training data, programming expertise, and high-carbon-footprint models.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源