论文标题

关系宏观理论指导人工智能学习宏和设计微观

A Relational Macrostate Theory Guides Artificial Intelligence to Learn Macro and Design Micro

论文作者

Zhang, Yanbo, Walker, Sara Imari

论文摘要

复杂系统的高时期,非线性和新兴特性构成了与在更简单的物理系统中如此成功的相同方式识别一般定律的挑战。在安德森(Anderson)的开创性著作中,他指出了宏观模式如何打破基础微观法律的对称性。然而,鲜为人知的是,这些大规模的新兴模式还必须保留微观规则的某些对称性。在这里,我们介绍了一种新的关系宏观理论(RMT),该理论定义了两个相互预测观测之间的对称性,并开发了机器学习体系结构Macronet,从而确定了宏观固化。使用此框架,我们展示了如何在复杂性范围内识别宏观物质,从简单的谐波振荡器的简单性到图灵不稳定性的更复杂的空间图案特征。此外,我们展示了如何将我们的框架用于与给定的宏观属性一致的微晶格的逆设计 - 在图灵模式中,这使我们可以使用给定的空间图案规范设计基础规则,并确定哪个规则参数最多控制这些模式。通过证明宏观特性如何从观测之间的映射中的对称性中出现的一般理论,我们提供了一个机器学习框架,该框架允许一种统一的方法从简单到复杂的系统中识别系统中的宏观物质,并允许设计与给定的宏观特性一致的新示例的设计。

The high-dimesionality, non-linearity and emergent properties of complex systems pose a challenge to identifying general laws in the same manner that has been so successful in simpler physical systems. In Anderson's seminal work on why "more is different" he pointed to how emergent, macroscale patterns break symmetries of the underlying microscale laws. Yet, less recognized is that these large-scale, emergent patterns must also retain some symmetries of the microscale rules. Here we introduce a new, relational macrostate theory (RMT) that defines macrostates in terms of symmetries between two mutually predictive observations, and develop a machine learning architecture, MacroNet, that identifies macrostates. Using this framework, we show how macrostates can be identifed across systems ranging in complexity from the simplicity of the simple harmonic oscillator to the much more complex spatial patterning characteristic of Turing instabilities. Furthermore, we show how our framework can be used for the inverse design of microstates consistent with a given macroscopic property -- in Turing patterns this allows us to design underlying rule with a given specification of spatial patterning, and to identify which rule parameters most control these patterns. By demonstrating a general theory for how macroscopic properties emerge from conservation of symmetries in the mapping between observations, we provide a machine learning framework that allows a unified approach to identifying macrostates in systems from the simple to complex, and allows the design of new examples consistent with a given macroscopic property.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源