论文标题

在LMI地区表征具有特征值的矩阵

Characterizing matrices with eigenvalues in an LMI region: A dissipative-Hamiltonian approach

论文作者

Choudhary, Neelam, Gillis, Nicolas, Sharma, Punit

论文摘要

在本文中,我们为特征值属于给定的LMI区域的一组矩阵提供了耗散性的哈密顿(DH)表征。这种特征是Choudhary等人的概括。 (数字线性代数应用,2020)到任何LMI区域。它可以在各种上下文中使用,我们在最接近的$ω$ - 稳定矩阵问题上说明了它:给定LMI区域$ω\ subseteq \ subseteq \ mathbb {c} $和一个矩阵$ a \ in \ mathbb {c}^c}^{c}^{n,n,n,n,n} $,找到$ a $ a $ a $ a $ a $ gues $ gues use $ igie $ c。最后,我们将表征推广到可以使用涉及复杂矩阵的LMI表示的更一般的区域。

In this paper, we provide a dissipative Hamiltonian (DH) characterization for the set of matrices whose eigenvalues belong to a given LMI region. This characterization is a generalization of that of Choudhary et al. (Numer. Linear Algebra Appl., 2020) to any LMI region. It can be used in various contexts, which we illustrate on the nearest $Ω$-stable matrix problem: given an LMI region $Ω\subseteq \mathbb{C}$ and a matrix $A \in \mathbb{C}^{n,n}$, find the nearest matrix to $A$ whose eigenvalues belong to $Ω$. Finally, we generalize our characterization to more general regions that can be expressed using LMIs involving complex matrices.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源