论文标题

改善了表示分段线性功能的神经复杂性的界限

Improved Bounds on Neural Complexity for Representing Piecewise Linear Functions

论文作者

Chen, Kuan-Lin, Garudadri, Harinath, Rao, Bhaskar D.

论文摘要

使用整流线性单元的深神经网络代表连续的分段线性(CPWL)函数,反之亦然。文献中的最新结果估计,准确表示任何CPWL功能所需的神经元数量会以碎片数量或指数级的成倍增长。此外,这种增长与输入维度线性扩增。这些现有结果似乎表明表示CPWL功能的成本很昂贵。在本文中,我们提出了更严格的界限,并建立了多项式时间算法,以找到满足这些给定CPWL函数这些界限的网络。我们证明,准确表示任何CPWL功能所需的隐藏神经元数量最多是碎片数量的二次函数。与所有以前的结果相反,该上限对输入维度不变。除了零件的数量外,我们还研究了CPWL函数中不同线性组件的数量。当还给出了这样的数字时,我们证明二次复杂性变成双线性,这意味着较低的神经复杂性,因为不同的线性组件的数量始终不超过CPWL函数中最小零件数的数量。当零件的数量未知时,我们证明,就不同的线性组件的数量而言,任何CPWL函数的神经复杂性最多都是多项式增长,对于低维输入,对于最差的情况而言,这些函数的神经复杂性和阶乘增长的最多是多项式增长,这比文献中现有的结果明显更好。

A deep neural network using rectified linear units represents a continuous piecewise linear (CPWL) function and vice versa. Recent results in the literature estimated that the number of neurons needed to exactly represent any CPWL function grows exponentially with the number of pieces or exponentially in terms of the factorial of the number of distinct linear components. Moreover, such growth is amplified linearly with the input dimension. These existing results seem to indicate that the cost of representing a CPWL function is expensive. In this paper, we propose much tighter bounds and establish a polynomial time algorithm to find a network satisfying these bounds for any given CPWL function. We prove that the number of hidden neurons required to exactly represent any CPWL function is at most a quadratic function of the number of pieces. In contrast to all previous results, this upper bound is invariant to the input dimension. Besides the number of pieces, we also study the number of distinct linear components in CPWL functions. When such a number is also given, we prove that the quadratic complexity turns into bilinear, which implies a lower neural complexity because the number of distinct linear components is always not greater than the minimum number of pieces in a CPWL function. When the number of pieces is unknown, we prove that, in terms of the number of distinct linear components, the neural complexities of any CPWL function are at most polynomial growth for low-dimensional inputs and factorial growth for the worst-case scenario, which are significantly better than existing results in the literature.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源