论文标题
某些有限的元环组代数的韦德本分解和愿意
Wedderburn Decomposition and Idempotents of some finite metacyclic group algebras
论文作者
论文摘要
在本文中,我们明确地显示了Metacyclic Group $ \ Mathbb f_qg $的Wedderburn分解,其中$ G $具有索引2和$ \ gcd(| g |,q)= 1 $的环状亚组。我们还构建了这些组代数的完整集合和左心群。
In this article, we show explicitly the Wedderburn decomposition of the metacyclic group algebra $\mathbb F_qG$, where $G$ has a cyclic subgroup of index 2 and $\gcd(|G|,q)=1$. We also construct the complete set of central and left idempotents of these group algebras.