论文标题

票价:可证明具有实用证书的公平代表性学习

FARE: Provably Fair Representation Learning with Practical Certificates

论文作者

Jovanović, Nikola, Balunović, Mislav, Dimitrov, Dimitar I., Vechev, Martin

论文摘要

公平表示学习(FRL)是一类流行的方法,旨在通过数据预处理产生公平的分类器。最近的监管指令强调了对提供实用证书的FRL方法的需求,即对任何经过预处理数据训练的下游分类器的不公平性的可证明的上限,这在实际情况下直接提供了保证。创建这样的FRL方法是尚未解决的重要挑战。在这项工作中,我们应对这一挑战并引入票价(用限制编码者公平),这是第一个带有实用公平证书的FRL方法。票价基于我们的关键见解,即限制编码器的表示空间,可以推导实际的保证,同时仍然允许有利的准确性权衡取舍适当的实例化,例如我们基于公平的树木提出的一个。为了产生实用证书,我们开发并应用了一个统计程序,该程序计算有限样本高信心上限,这是对任何接受过票价嵌入的下游分类器的不公平性。在我们的全面实验评估中,我们证明了票价产生的实用证书,这些证书是紧密的,甚至与以前的方法获得的纯粹经验结果相提并论,这确立了我们方法的实际价值。

Fair representation learning (FRL) is a popular class of methods aiming to produce fair classifiers via data preprocessing. Recent regulatory directives stress the need for FRL methods that provide practical certificates, i.e., provable upper bounds on the unfairness of any downstream classifier trained on preprocessed data, which directly provides assurance in a practical scenario. Creating such FRL methods is an important challenge that remains unsolved. In this work, we address that challenge and introduce FARE (Fairness with Restricted Encoders), the first FRL method with practical fairness certificates. FARE is based on our key insight that restricting the representation space of the encoder enables the derivation of practical guarantees, while still permitting favorable accuracy-fairness tradeoffs for suitable instantiations, such as one we propose based on fair trees. To produce a practical certificate, we develop and apply a statistical procedure that computes a finite sample high-confidence upper bound on the unfairness of any downstream classifier trained on FARE embeddings. In our comprehensive experimental evaluation, we demonstrate that FARE produces practical certificates that are tight and often even comparable with purely empirical results obtained by prior methods, which establishes the practical value of our approach.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源