论文标题
从GRB221009A的多TEV光子解释
Interpretation of multi-TeV photons from GRB221009A
论文作者
论文摘要
在RedShift $ z = 0.1505 $的附近GRB221009A与Lhaaso Air Shower阵列的最大能量达到了18 TEV的最大能量。能量$e_γ= 18 $ tev的光子的预期光学深度在9.4和27.1之间,根据相关中部红外红外范围内的半乳酸外背景光(EBL)的现有模型。在几种(但并非全部)EBL模型中,导致的通量抑制使这些EBL模型不太可能在要求的能量处观察到该光子。如果已经确认了光子事件及其能量,并且可能观察到超过10 TEV的光子,则必须通过在粒子物理学标准模型的扩展中预测的机制来抑制光子对生产过程。我们考虑了光子与宿主星系磁场以及银河系和银河系和Lorentz不变性违规(LIV)中光子混合(例如轴突状颗粒; Alps)的可能性。在光子 - α混合的情况下,增强因子将达到$ \ sim10^6 $的光子耦合值$ \ sim10^6 $,而不是由铸造实验排除的,而是受其他天体物理约束的限制。可行的场景将需要在GRB中或附近非常有效的混合,或者总亮度的最大部分在TEV Energies处辐射,与以前的GRB余气不同。在LIV的情况下,对于LIV破坏能量尺度$ \ Lessim 2 \ times 10^{29} $ 〜EV($ \ Lessim 4 \ times 10^{21} $ 〜EV),对于线性(Quadratic)的分散关系修改。一个更简单的解释将是对带电的宇宙射线淋浴的错误识别。
The nearby GRB221009A at redshift $z=0.1505$ has been observed up to a maximum energy of 18 TeV with the LHAASO air shower array. The expected optical depth for a photon with energy $E_γ=18$ TeV varies between 9.4 and 27.1 according to existing models of the extra-galactic background light (EBL) in the relevant mid infra-red range. The resulting suppression of the flux in several (but not all) EBL models makes it for these EBL models unlikely that this photon could have been observed at the claimed energy. If the photon event and its energy are confirmed and possibly even more photons above 10 TeV have been observed, the photon-pair production process would have to be suppressed by mechanisms predicted in extensions of the Standard Model of particle physics. We consider the possibilities of photon mixing with a light pseudo-scalar (e.g., axion-like particles; ALPs) in the magnetic field of the host galaxy and the Milky Way and Lorentz invariance violation (LIV). In the case of photon-ALP mixing, the boost factor would reach values $\sim10^6$ for photon couplings not ruled out by the CAST experiment, but limited by other astrophysical constraints. Viable scenarios would require either very efficient mixing in or near to the GRB or that the largest part of the total luminosity is radiated at TeV energies, different from previous GRB afterglows. In the case of LIV, required boost factors are achievable for a LIV breaking energy scale $\lesssim 2\times 10^{29}$~eV ($\lesssim 4\times 10^{21}$~eV) for the linear (quadratic) modification of the dispersion relation. A more simple explanation would be a misidentification of a charged cosmic-ray air shower.