论文标题

一种贝叶斯多元空间方法,用于疾病死亡生存模型

A Bayesian multivariate spatial approach for illness-death survival models

论文作者

Llopis-Cardona, Fran, Armero, Carmen, Sanfélix-Gimeno, Gabriel

论文摘要

疾病死亡模型是多州框架内的一类随机模型。在这些模型中,允许个人在与疾病和死亡有关的不同状态之间随着时间的流逝。在患有非末端疾病时,它们具有特别的兴趣,因为它们不仅考虑了死亡的竞争风险,而且还允许研究从疾病到死亡的进展。可以对每个过渡的强度进行建模,包括协变量的固定和随机效应。特别是,可以使用空间结构的随机效应或其多元版本来评估区域之间和过渡之间的空间差异。我们提出了一个基于疾病死亡模型的贝叶斯方法学框架,该模型具有随机效应的多元leroux。我们将该模型应用于一项有关老年患者骨质疏松性髋部骨折后进展的队列研究。从这个空间疾病死亡模型中,我们评估了与复发性髋部骨折和死亡有关的风险,累积事件和过渡概率的地理变化。贝叶斯推论是通过集成的嵌套拉普拉斯近似(INLA)完成的。

Illness-death models are a class of stochastic models inside the multi-state framework. In those models, individuals are allowed to move over time between different states related to illness and death. They are of special interest when working with non-terminal diseases, as they not only consider the competing risk of death but also allow to study progression from illness to death. The intensity of each transition can be modelled including both fixed and random effects of covariates. In particular, spatially structured random effects or their multivariate versions can be used to assess spatial differences between regions and among transitions. We propose a Bayesian methodological framework based on an illness-death model with a multivariate Leroux prior for the random effects. We apply this model to a cohort study regarding progression after osteoporotic hip fracture in elderly patients. From this spatial illness-death model we assess the geographical variation in risks, cumulative incidences, and transition probabilities related to recurrent hip fracture and death. Bayesian inference is done via the integrated nested Laplace approximation (INLA).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源