论文标题

DeepFlame:一个深度学习授权的开源平台,用于反应流程模拟

DeepFlame: A deep learning empowered open-source platform for reacting flow simulations

论文作者

Mao, Runze, Lin, Minqi, Zhang, Yan, Zhang, Tianhan, Xu, Zhi-Qin John, Chen, Zhi X.

论文摘要

在这项工作中,我们介绍了DeepFlame,这是一个开源C ++平台,具有利用机器学习算法和预训练的模型来解决反应流动的功能。我们结合了计算流体动力学库OpenFOAM,机器学习框架和化学动力学程序Cantera的各个优势。跨上图功能和数据接口的复杂性(Deepflame的核心)被最小化,以实现一个简单明了的工作流程,以维护代码维护,扩展和升级。作为演示,我们将最近的研究应用于预测化学动力学的最新研究(Zhang等,燃烧。火焰第245页,第112319、2022页),以突出机器学习在加速反应流量模拟中的潜力。通过广泛的规范案例进行彻底的代码验证,以评估其准确性和效率。结果表明,对于稳态和瞬态过程,在深弹药中实现的对流扩散反应算法都是可靠且准确的。此外,许多旨在进一步提高计算效率的方法,例如探索了动态载荷平衡和自适应网格的细化。他们的表现也得到了评估和报告。通过在这项工作中实施的深度学习方法,在中端图形处理单元(GPU)上执行时,在简单的氢点火案例(GPU)中加快了两个数量级的加速。预计碳氢化合物和其他复合燃料的计算效率将进一步提高。在AI特异性的芯片 - 深度计算单元(DCU)上也获得了类似的加速度,突出了Deepflame在利用下一代计算体系结构和硬件方面的潜力。

In this work, we introduce DeepFlame, an open-source C++ platform with the capabilities of utilising machine learning algorithms and pre-trained models to solve for reactive flows. We combine the individual strengths of the computational fluid dynamics library OpenFOAM, machine learning framework Torch, and chemical kinetics program Cantera. The complexity of cross-library function and data interfacing (the core of DeepFlame) is minimised to achieve a simple and clear workflow for code maintenance, extension and upgrading. As a demonstration, we apply our recent work on deep learning for predicting chemical kinetics (Zhang et al. Combust. Flame vol. 245 pp. 112319, 2022) to highlight the potential of machine learning in accelerating reacting flow simulation. A thorough code validation is conducted via a broad range of canonical cases to assess its accuracy and efficiency. The results demonstrate that the convection-diffusion-reaction algorithms implemented in DeepFlame are robust and accurate for both steady-state and transient processes. In addition, a number of methods aiming to further improve the computational efficiency, e.g. dynamic load balancing and adaptive mesh refinement, are explored. Their performances are also evaluated and reported. With the deep learning method implemented in this work, a speed-up of two orders of magnitude is achieved in a simple hydrogen ignition case when performed on a medium-end graphics processing unit (GPU). Further gain in computational efficiency is expected for hydrocarbon and other complex fuels. A similar level of acceleration is obtained on an AI-specific chip - deep computing unit (DCU), highlighting the potential of DeepFlame in leveraging the next-generation computing architecture and hardware.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源