论文标题

用于重力透镜模拟的球形快速多极法(SFMM)

The spherical Fast Multipole Method (sFMM) for Gravitational Lensing Simulation

论文作者

Suo, Xingpao, Kang, Xi, Wei, Chengliang, Li, Guoliang

论文摘要

在本文中,我们提出了一种球形快速多极方法(SFMM),用于射线追踪弯曲天空上的重力镜头(GL)。 SFMM是快速多种方法(FMM)到Sphere $ \ Mathbb s^2 $的非平地扩展,它可以准确地以$ o(n)\ log(n)$的时间复杂性来准确地求解泊松方程,其中$ n $是粒子的数量。发现SFMM的时间复杂性接近$ O(n)$,并且计算精度可以在我们的测试中达到$ 10^{ - 10} $。此外,与快速球形谐波变换(FSHT)相比,SFMM不仅更快,而且更准确,因为它具有保留密度场的高频组件的能力。这些优点使SFMM成为模拟弯曲天空上重力镜头的最佳方法,即即将进行的大区域天空调查,例如Vera Rubin天文台和中国空间站望远镜。

In this paper, we present a spherical Fast Multipole Method (sFMM) for ray tracing simulation of gravitational lensing (GL) on a curved sky. The sFMM is a non-trivial extension of the Fast Multiple Method (FMM) to sphere $\mathbb S^2$, and it can accurately solve the Poisson equation with time complexity of $O(N)\log(N)$, where $N$ is the number of particles. It is found that the time complexity of the sFMM is near $O(N)$ and the computational accuracy can reach $10^{-10}$ in our test. In addition, compared with the Fast Spherical Harmonic Transform (FSHT), the sFMM is not only faster but more accurate, as it has the ability to reserve high-frequency components of the density field. These merits make the sFMM an optimum method to simulate the gravitational lensing on a curved sky, which is the case for upcoming large-area sky surveys, such as the Vera Rubin Observatory and the China Space Station Telescope.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源