论文标题

基于代理的城市分析建模:艺术和挑战的状态

Agent-Based Modelling for Urban Analytics: State of the Art and Challenges

论文作者

Malleson, Nick, Birkin, Mark, Birks, Daniel, Ge, Jiaqi, Heppenstall, Alison, Manley, Ed, McCulloch, Josie, Ternes, Patricia

论文摘要

基于代理的建模(ABM)是更广泛的多机构系统(MAS)研究的一个方面,它探讨了单个“代理”的集体行为,以及其行为和互动对更广泛的系统性行为的影响。该方法已被证明在探索和理解人类社会方面具有相当大的价值,但仍然在很大程度上仅限于学术界使用。这在城市分析领域尤其明显。一种以使用新形式的数据与计算方法结合使用以深入了解城市过程的特征。在Urban Analytics中,ABM成为一种有价值的方法,是理解最终推动城市的低级互动的宝贵方法,但迄今为止,利益相关者(规划师,政府等)很少使用以解决实际政策问题。本文介绍了一群与伦敦艾伦·图灵研究所(Alan Turing Institute of Alan Turing Institute of Alan Turing Institute of Un London(英国))相关的ABM研究人员,在MAS和Urban Analytics(MAS和Urban Analytics)的界面上应用了最新的ABM。它解决了围绕建模行为,使用新形式的数据,模型在高不确定性下的校准,实时建模,AI技术的使用,大规模模型以及对建模策略的影响。讨论还可以在更广泛地围绕数据科学,人工智能和MAS的广泛辩论中进行当前的研究。

Agent-based modelling (ABM) is a facet of wider Multi-Agent Systems (MAS) research that explores the collective behaviour of individual `agents', and the implications that their behaviour and interactions have for wider systemic behaviour. The method has been shown to hold considerable value in exploring and understanding human societies, but is still largely confined to use in academia. This is particularly evident in the field of Urban Analytics; one that is characterised by the use of new forms of data in combination with computational approaches to gain insight into urban processes. In Urban Analytics, ABM is gaining popularity as a valuable method for understanding the low-level interactions that ultimately drive cities, but as yet is rarely used by stakeholders (planners, governments, etc.) to address real policy problems. This paper presents the state-of-the-art in the application of ABM at the interface of MAS and Urban Analytics by a group of ABM researchers who are affiliated with the Urban Analytics programme of the Alan Turing Institute in London (UK). It addresses issues around modelling behaviour, the use of new forms of data, the calibration of models under high uncertainty, real-time modelling, the use of AI techniques, large-scale models, and the implications for modelling policy. The discussion also contextualises current research in wider debates around Data Science, Artificial Intelligence, and MAS more broadly.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源