论文标题

更广泛:更高:图像垫的密集整合和全球前景感知

Wider and Higher: Intensive Integration and Global Foreground Perception for Image Matting

论文作者

Qiao, Yu, Wei, Ziqi, Liu, Yuhao, Wang, Yuxin, Zhou, Dongsheng, Zhang, Qiang, Yang, Xin

论文摘要

本文回顾了最新的基于深度学习的疗程研究,并想象了我们更广泛和更高的图像垫子动机。许多方法都使用复杂的编码器来实现α哑光,以提取强大的语义,然后诉诸于U-NET样解码器,以连接或融合编码器特征。但是,图像垫本质上是像素的回归,理想的情况是从输入图像感知最大不透明度对应关系。在本文中,我们认为高分辨率特征表示,感知和交流对于垫子准确性更为重要。因此,我们提出了一个密集的集成和全球前景感知网络(I2GFP),以整合更广泛和更高的特征流。更宽意味着我们在每个解码器阶段结合密集的特征,而更高的表明我们保留高分辨率中间特征并感知大规模前景外观。我们的动机牺牲了模型深度,以促进绩效。我们执行广泛的实验来证明所提出的I2GFP模型,并且可以在不同的公共数据集中实现最新结果。

This paper reviews recent deep-learning-based matting research and conceives our wider and higher motivation for image matting. Many approaches achieve alpha mattes with complex encoders to extract robust semantics, then resort to the U-net-like decoder to concatenate or fuse encoder features. However, image matting is essentially a pixel-wise regression, and the ideal situation is to perceive the maximum opacity correspondence from the input image. In this paper, we argue that the high-resolution feature representation, perception and communication are more crucial for matting accuracy. Therefore, we propose an Intensive Integration and Global Foreground Perception network (I2GFP) to integrate wider and higher feature streams. Wider means we combine intensive features in each decoder stage, while higher suggests we retain high-resolution intermediate features and perceive large-scale foreground appearance. Our motivation sacrifices model depth for a significant performance promotion. We perform extensive experiments to prove the proposed I2GFP model, and state-of-the-art results can be achieved on different public datasets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源