论文标题

评估情感分析的合理性和忠诚解释

On the Evaluation of the Plausibility and Faithfulness of Sentiment Analysis Explanations

论文作者

Zini, Julia El, Mansour, Mohamad, Mousi, Basel, Awad, Mariette

论文摘要

当前可解释的AI(EXAI)方法,尤其是在NLP字段中,是通过使用不同的指标来评估几个方面的各种数据集进行的。缺乏共同的评估框架阻碍了这种方法的进度跟踪及其更广泛的采用。在这项工作中,受到离线信息检索的启发,我们提出了不同的指标和技术来评估从两个角度的SA模型的解释性。首先,我们在忠实地解释预测结果时评估了提取的“原理”的强度。其次,我们衡量Exai方法与人类对本土数据集的判断之间的一致性,以反思理由的合理性。我们进行的实验包括四个维度:(1)SA模型的基本体系结构,(2)遵循EXAI方法的方法,(3)推理难度,以及(4)地面真实性理性的同质​​性。我们从经验上证明,锚解释与人类判断更加一致,并且可以更有信心提取支持理由。可以预见的是,从提取支持证据的情况下,表明了对Exai方法的推理复杂性。此外,在各种体系结构的不同解释方法的结果之间发现了显着的差异,这表明需要合并以观察增强的性能。主要是,变压器显示出比卷积和经常性体系结构具有更好的解释性。我们的工作铺平了设计更容易解释的NLP模型,并为其相对优势和鲁棒性提供共同的评估基础。

Current Explainable AI (ExAI) methods, especially in the NLP field, are conducted on various datasets by employing different metrics to evaluate several aspects. The lack of a common evaluation framework is hindering the progress tracking of such methods and their wider adoption. In this work, inspired by offline information retrieval, we propose different metrics and techniques to evaluate the explainability of SA models from two angles. First, we evaluate the strength of the extracted "rationales" in faithfully explaining the predicted outcome. Second, we measure the agreement between ExAI methods and human judgment on a homegrown dataset1 to reflect on the rationales plausibility. Our conducted experiments comprise four dimensions: (1) the underlying architectures of SA models, (2) the approach followed by the ExAI method, (3) the reasoning difficulty, and (4) the homogeneity of the ground-truth rationales. We empirically demonstrate that anchors explanations are more aligned with the human judgment and can be more confident in extracting supporting rationales. As can be foreseen, the reasoning complexity of sentiment is shown to thwart ExAI methods from extracting supporting evidence. Moreover, a remarkable discrepancy is discerned between the results of different explainability methods on the various architectures suggesting the need for consolidation to observe enhanced performance. Predominantly, transformers are shown to exhibit better explainability than convolutional and recurrent architectures. Our work paves the way towards designing more interpretable NLP models and enabling a common evaluation ground for their relative strengths and robustness.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源