论文标题

重新思考注释:语言学习者可以做出贡献吗?

Rethinking Annotation: Can Language Learners Contribute?

论文作者

Yoo, Haneul, Putri, Rifki Afina, Lee, Changyoon, Lee, Youngin, Ahn, So-Yeon, Kang, Dongyeop, Oh, Alice

论文摘要

传统上,研究人员招募了母语者,为广泛使用的基准数据集提供注释。但是,有一些语言很难招募以母语为母语的人,这将有助于找到这些语言的学习者来注释数据。在本文中,我们研究语言学习者是否可以为基准数据集贡献注释。在经过精心控制的注释实验中,我们招募了36位语言学习者,提供两种类型的其他资源(字典和机器翻译句子),并执行微型测试以衡量其语言能力。我们针对三种语言,英语,韩语和印尼语,以及情感分析的四个NLP任务,自然语言推断,命名实体识别和机器阅读理解。我们发现,语言学习者,尤其是那些具有中间或高级语言水平的人,能够在其他资源的帮助下提供相当准确的标签。此外,我们表明数据注释从词汇和语法方面提高了学习者的语言水平。我们发现的一个含义是,扩大注释任务以包括语言学习者可以打开机会,以建立很难招募母语者的语言的基准数据集。

Researchers have traditionally recruited native speakers to provide annotations for widely used benchmark datasets. However, there are languages for which recruiting native speakers can be difficult, and it would help to find learners of those languages to annotate the data. In this paper, we investigate whether language learners can contribute annotations to benchmark datasets. In a carefully controlled annotation experiment, we recruit 36 language learners, provide two types of additional resources (dictionaries and machine-translated sentences), and perform mini-tests to measure their language proficiency. We target three languages, English, Korean, and Indonesian, and the four NLP tasks of sentiment analysis, natural language inference, named entity recognition, and machine reading comprehension. We find that language learners, especially those with intermediate or advanced levels of language proficiency, are able to provide fairly accurate labels with the help of additional resources. Moreover, we show that data annotation improves learners' language proficiency in terms of vocabulary and grammar. One implication of our findings is that broadening the annotation task to include language learners can open up the opportunity to build benchmark datasets for languages for which it is difficult to recruit native speakers.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源