论文标题

探索P波培养的Aubry-André-Harper模型中的非常规量子关键性

Exploring unconventional quantum criticality in the p-wave-paired Aubry-André-Harper model

论文作者

Lv, Ting, Liu, Yu-Bin, Yi, Tian-Cheng, Li, Liangsheng, Liu, Maoxin, You, Wen-Long

论文摘要

我们已经研究了与P波配对的Aubry-André-Harper模型中扩展相和临界阶段之间量子临界点附近的缩放属性,因为大多数研究都集中在从临界阶段到本地化阶段的定位过渡,因此很少被利用。我们发现,频谱平均纠缠熵和广义的保真度易感性是相应临界点的显着通用阶参数,而无需闭合。我们为这些关键性探针介绍了一个宽度缩放ANSATZ,以开发关键指数和缩放函数的统一理论。因此,鉴于斐波那契序列的系统尺寸增加,我们通过有限大小的缩放提取相关长度临界指数$ν$和动态指数$ z $。 $ν\ simeq 1.000 $和$ z \ simeq 3.610 $的检索值表明,从扩展阶段到临界阶段的过渡属于与本地化过渡的不同普遍性类别。我们的方法为探索最先进的量子仿真实验中准碘系统的非常规量子关键性和相关的通用信息奠定了阶段。

We have investigated scaling properties near the quantum critical point between the extended phase and the critical phase in the Aubry-André-Harper model with p-wave pairing, which have rarely been exploited as most investigations focus on the localization transition from the critical phase to the localized phase. We find that the spectrum averaged entanglement entropy and the generalized fidelity susceptibility act as eminent universal order parameters of the corresponding critical point without gap closing. We introduce a Widom scaling ansatz for these criticality probes to develop a unified theory of critical exponents and scaling functions. We thus extract the correlation-length critical exponent $ν$ and the dynamical exponent $z$ through the finite-size scaling given the system sizes increase in the Fibonacci sequence. The retrieved values of $ν\simeq 1.000$ and $z \simeq 3.610$ indicate that the transition from the extended phase to the critical phase belongs to a different universality class from the localization transition. Our approach sets the stage for exploring the unconventional quantum criticality and the associated universal information of quasiperiodic systems in state-of-the-art quantum simulation experiments.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源