论文标题
第四阶schrödinger方程的Strichartz不平等的极端化器
Extremizers for the Strichartz Inequality for a Fourth-Order Schrödinger Equation
论文作者
论文摘要
在本文中,我们考虑了$ \ mathbb {r}^{2+1} $的第四阶Schrödinger方程的Strichartz不等式。我们表明,使用线性轮廓分解存在极端化,该分解遵循端点版本分解和固定相位方法。根据极端化的存在,我们研究了相关的Euler-lagrange方程,以表明极端化的人具有指数衰减,因此必须进行分析。
In this paper, we consider the Strichartz inequality for a fourth-order Schrödinger equation on $\mathbb{R}^{2+1}$. We show that extremizers exist using a linear profile decomposition which follows from the endpoint version decomposition and the stationary phase method. Based on the existence of extremizers, we investigate the associated Euler-Lagrange equation to show that the extremizers have exponential decay and consequently must be analytic.