论文标题
部分可观测时空混沌系统的无模型预测
Gauss-Bonnet black holes in a special anisotropic scaling spacetime
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
Inspired by the Lifshitz gravity as a theory with anisotropic scaling behavior, we suggest a new $(n+1)-$dimensional metric in which the time and spatial coordinates scale anisotropically as $(t,r,θ_{i})\,\to (λ^{z}t,λ^{-1}r,λ^{x_i}\,θ_{i})$. Due to the anisotropic scaling dimension of the spatial coordinates, this spacetime does not support the full Schrödinger symmetry group. We look for the analytical solution of Gauss-Bonnet gravity in the context of the mentioned geometry. We show that Gauss-Bonnet gravity admits an analytical solution provided that the constants of the theory are properly adjusted. We obtain an exact vacuum solution, independent of the value of the dynamical exponent $z$, which is a black hole solution for the pseudo-hyperbolic horizon structure and a naked singularity for the pseudo-spherical boundary. We also obtain another exact solution of Gauss-Bonnet gravity under certain conditions. After investigating some geometrical properties of the obtained solutions, we consider the thermodynamic properties of these topological black holes and study the stability of the obtained solutions for each geometrical structure.