论文标题

固定网络的控制:通过同时进行矩阵降低维度

Pinning control of networks: dimensionality reduction through simultaneous block-diagonalization of matrices

论文作者

Panahi, Shirin, Lodi, Matteo, Storace, Marco, Sorrentino, Francesco

论文摘要

在本文中,我们在存在两种不同类型的耦合的情况下研究网络固定控制问题:(i)网络节点之间的节点对节点耦合,以及(ii)从源节点到“固定节点”的输入到节点耦合。以前的工作主要集中在(i)和(ii)相同类型的情况下。我们通过使用矩阵的同时块对角线化(SBD)技术将目标同步溶液的稳定性分析分解为最低维度的子问题。有趣的是,我们获得了两种不同类型的块,即驱动和未经验证。驱动块的总体维度等于适当定义的可控子空间的尺寸,而其余的所有未构架块都是标量。我们的主要结果是将稳定性问题分解为四个独立的方程组,我们称其为可控,无法控制的,冗余可控和冗余的无法控制的商。我们的分析表明,固定节点的数量和位置会影响每个方程组的数量和维度。我们还观察到,在各种复杂的网络中,目标同步解决方案的稳定性实际上仅由单个商控制块确定。

In this paper, we study the network pinning control problem in the presence of two different types of coupling: (i) node-to-node coupling among the network nodes and (ii) input-to-node coupling from the source node to the `pinned nodes'. Previous work has mainly focused on the case that (i) and (ii) are of the same type. We decouple the stability analysis of the target synchronous solution into subproblems of the lowest dimension by using the techniques of simultaneous block diagonalization (SBD) of matrices. Interestingly, we obtain two different types of blocks, driven and undriven. The overall dimension of the driven blocks is equal to the dimension of an appropriately defined controllable subspace, while all the remaining undriven blocks are scalar. Our main result is a decomposition of the stability problem into four independent sets of equations, which we call quotient controllable, quotient uncontrollable, redundant controllable, and redundant uncontrollable. Our analysis shows that the number and location of the pinned nodes affect the number and the dimension of each set of equations. We also observe that in a large variety of complex networks, stability of the target synchronous solution is de facto only determined by a single quotient controllable block.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源