论文标题

互动语言:实时与机器人交谈

Interactive Language: Talking to Robots in Real Time

论文作者

Lynch, Corey, Wahid, Ayzaan, Tompson, Jonathan, Ding, Tianli, Betker, James, Baruch, Robert, Armstrong, Travis, Florence, Pete

论文摘要

我们提出了一个框架,用于在现实世界中构建交互式,实时,自然的可实施机器人,并开放相关资产(数据集,环境,基准和政策)。在数十万个语言轨迹的数据集上进行了行为克隆培训,制定的政策可以熟练地执行比以前的作品更大的命令:具体来说,我们估计,我们在87,000个独特的自然语言中估计,在87,000个独特的自然语言串上,指定原始的端端到端到端的Visuo-Linguo-linguo-Motor技能。我们发现,同一政策能够通过实时语言被人类指导,以解决广泛的精确的长远重排目标,例如“用块来弄清楚笑脸”。我们发布的数据集包含近600,000个语言标记的轨迹,该轨迹比以前可用的数据集大的数量级。我们希望所证明的结果和相关资产能够进一步发展有用,有能力,自然的可互关系机器人。请参阅https://interactive-language.github.io的视频。

We present a framework for building interactive, real-time, natural language-instructable robots in the real world, and we open source related assets (dataset, environment, benchmark, and policies). Trained with behavioral cloning on a dataset of hundreds of thousands of language-annotated trajectories, a produced policy can proficiently execute an order of magnitude more commands than previous works: specifically we estimate a 93.5% success rate on a set of 87,000 unique natural language strings specifying raw end-to-end visuo-linguo-motor skills in the real world. We find that the same policy is capable of being guided by a human via real-time language to address a wide range of precise long-horizon rearrangement goals, e.g. "make a smiley face out of blocks". The dataset we release comprises nearly 600,000 language-labeled trajectories, an order of magnitude larger than prior available datasets. We hope the demonstrated results and associated assets enable further advancement of helpful, capable, natural-language-interactable robots. See videos at https://interactive-language.github.io.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源