论文标题

学习多分辨率的功能图,具有光谱关注以使形状匹配

Learning Multi-resolution Functional Maps with Spectral Attention for Robust Shape Matching

论文作者

Li, Lei, Donati, Nicolas, Ovsjanikov, Maks

论文摘要

在这项工作中,我们提出了一个新型的非刚性形状匹配框架,基于多分辨率功能图,并引起了光谱的关注。现有的功能图学习方法均取决于光谱分辨率超参数的关键选择,这可能会严重影响整体准确性或导致过度拟合(如果不仔细选择)。在本文中,我们表明可以通过引入光谱关注来缓解光谱分辨率调整。我们的框架适用于监督和无监督的设置,我们表明可以训练网络,以便根据给定的形状输入来调整光谱分辨率。更具体地说,我们建议计算表征跨各种光谱分辨率的对应关系的多分辨率功能图,并引入一个光谱注意网络,有助于将此表示结合到单个相干的最终通信中。我们的方法不仅具有近乎静电输入的准确性,因此通常首选高光谱分辨率,而且即使在存在重大的非均衡失真的情况下,也可以强大的且能够产生合理的匹配,这对现有方法构成了巨大的挑战。我们通过在一系列具有挑战性的近乎等法和非等法形状匹配的基准上进行实验来证明我们的方法的出色性能。

In this work, we present a novel non-rigid shape matching framework based on multi-resolution functional maps with spectral attention. Existing functional map learning methods all rely on the critical choice of the spectral resolution hyperparameter, which can severely affect the overall accuracy or lead to overfitting, if not chosen carefully. In this paper, we show that spectral resolution tuning can be alleviated by introducing spectral attention. Our framework is applicable in both supervised and unsupervised settings, and we show that it is possible to train the network so that it can adapt the spectral resolution, depending on the given shape input. More specifically, we propose to compute multi-resolution functional maps that characterize correspondence across a range of spectral resolutions, and introduce a spectral attention network that helps to combine this representation into a single coherent final correspondence. Our approach is not only accurate with near-isometric input, for which a high spectral resolution is typically preferred, but also robust and able to produce reasonable matching even in the presence of significant non-isometric distortion, which poses great challenges to existing methods. We demonstrate the superior performance of our approach through experiments on a suite of challenging near-isometric and non-isometric shape matching benchmarks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源