论文标题

正确:由运动校正的定量R2*映射的深度展开框架

CoRRECT: A Deep Unfolding Framework for Motion-Corrected Quantitative R2* Mapping

论文作者

Xu, Xiaojian, Gan, Weijie, Kothapalli, Satya V. V. N., Yablonskiy, Dmitriy A., Kamilov, Ulugbek S.

论文摘要

定量MRI(QMRI)是指量化生物组织参数空间分布的一类MRI方法。传统的QMRI方法通常分别处理由加速数据采集,非自愿物理运动和磁场不均匀性引起的伪像,导致端到端的终端性能。本文介绍了正确的QMRI的统一深度展开(DU)框架,该框架由基于模型的端到端神经网络组成,一种减少运动艺术的方法以及一种自学的学习方案。该网络经过训练,可以生成R2*地图,其K空间数据还通过考虑运动和现场不均匀性与真实数据相匹配。部署后,CRORCE仅使用k空间数据,而无需任何预计参数进行运动或不均匀性校正。我们对实验收集的多速率回声(MGRE)MRI数据的结果表明,在高度加速的采集设置中,正确的恢复运动和不均匀性无伪影R2*地图。这项工作为可以整合物理测量模型,生物物理信号模型以及高质量QMRI的先前模型的DU方法打开了大门。

Quantitative MRI (qMRI) refers to a class of MRI methods for quantifying the spatial distribution of biological tissue parameters. Traditional qMRI methods usually deal separately with artifacts arising from accelerated data acquisition, involuntary physical motion, and magnetic-field inhomogeneities, leading to suboptimal end-to-end performance. This paper presents CoRRECT, a unified deep unfolding (DU) framework for qMRI consisting of a model-based end-to-end neural network, a method for motion-artifact reduction, and a self-supervised learning scheme. The network is trained to produce R2* maps whose k-space data matches the real data by also accounting for motion and field inhomogeneities. When deployed, CoRRECT only uses the k-space data without any pre-computed parameters for motion or inhomogeneity correction. Our results on experimentally collected multi-Gradient-Recalled Echo (mGRE) MRI data show that CoRRECT recovers motion and inhomogeneity artifact-free R2* maps in highly accelerated acquisition settings. This work opens the door to DU methods that can integrate physical measurement models, biophysical signal models, and learned prior models for high-quality qMRI.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源