论文标题
可重新配置的光学镊子阵列中的分子的点纠缠
On-Demand Entanglement of Molecules in a Reconfigurable Optical Tweezer Array
论文作者
论文摘要
纠缠对于许多量子应用至关重要,包括量子信息处理,量子多体系统的模拟以及量子增强的感应。由于分子丰富的内部结构和相互作用,已被提议作为量子科学的有前途的平台。但是,对单独控制的分子的确定性纠缠仍然是长期以来的实验挑战。在这里,我们首次证明了单独制备的分子的按需纠缠。利用使用可重构光学镊子阵列制备的一对分子之间的电动偶极相互作用,我们实现了一个纠缠的两分门,并使用它来确定性地创建钟形对。我们的结果表明,量子信息处理,量子自旋模型的模拟以及量子增强感测所需的关键构件。他们还开辟了新的可能性,例如使用被困的分子进行量子增强的基本物理测试,并探索与纠缠物质的碰撞和化学反应。
Entanglement is crucial to many quantum applications including quantum information processing, simulation of quantum many-body systems, and quantum-enhanced sensing. Molecules, because of their rich internal structure and interactions, have been proposed as a promising platform for quantum science. Deterministic entanglement of individually controlled molecules has nevertheless been a long-standing experimental challenge. Here we demonstrate, for the first time, on-demand entanglement of individually prepared molecules. Using the electric dipolar interaction between pairs of molecules prepared using a reconfigurable optical tweezer array, we realize an entangling two-qubit gate, and use it to deterministically create Bell pairs. Our results demonstrate the key building blocks needed for quantum information processing, simulation of quantum spin models, and quantum-enhanced sensing. They also open up new possibilities such as using trapped molecules for quantum-enhanced fundamental physics tests and exploring collisions and chemical reactions with entangled matter.