论文标题

动态神经元网络有效地在与现实世界对象的机器人相互作用中实现了分类

Dynamic neuronal networks efficiently achieve classification in robotic interactions with real-world objects

论文作者

Uttayopas, Pakorn, Cheng, Xiaoxiao, Rongala, Udaya Bhaskar, Jörntell, Henrik, Burdet, Etienne

论文摘要

生物皮质网络是潜在的完全复发网络,而没有任何不同的输出层,而识别可能依赖于活动在其神经元中的分布。由于这样的生物网络可以具有丰富的动态,因此它们经过精心设计以应对自然界中发生的类型的动态相互作用,而传统的机器学习网络可能难以理解此类数据。在这里,我们连接了一个简单的模型神经元网络(基于具有生物学上逼真的动力学(LSM)的“线性求和神经元模型”,其中10个兴奋性和10个抑制性神经元,随机连接的10个抑制性神经元)与具有多种类型的力传感器的机器人手指与不同级别的合规性材料相互作用时,具有多种类型的力传感器。范围:探索网络在分类准确性方面的性能。因此,我们比较了网络输出的性能与感觉数据的统计特征及其机械性能的主要成分分析。值得注意的是,尽管LSM是一个非常小且未经训练的网络,并且仅旨在提供丰富的内部网络动力学,而神经元模型本身则是高度简化的,但我们发现LSM在准确性方面优于这些其他统计方法。

Biological cortical networks are potentially fully recurrent networks without any distinct output layer, where recognition may instead rely on the distribution of activity across its neurons. Because such biological networks can have rich dynamics, they are well-designed to cope with dynamical interactions of the types that occur in nature, while traditional machine learning networks may struggle to make sense of such data. Here we connected a simple model neuronal network (based on the 'linear summation neuron model' featuring biologically realistic dynamics (LSM), consisting of 10 of excitatory and 10 inhibitory neurons, randomly connected) to a robot finger with multiple types of force sensors when interacting with materials of different levels of compliance. Scope: to explore the performance of the network on classification accuracy. Therefore, we compared the performance of the network output with principal component analysis of statistical features of the sensory data as well as its mechanical properties. Remarkably, even though the LSM was a very small and untrained network, and merely designed to provide rich internal network dynamics while the neuron model itself was highly simplified, we found that the LSM outperformed these other statistical approaches in terms of accuracy.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源