论文标题
$ f(t,t_g)$ cesmology中的Noether对称性
Noether Symmetries in $f(T,T_G)$ Cosmology
论文作者
论文摘要
可以通过分析$ f(t,t_g)$重力形式主义来探索与扭转标量相关的所有自由度,其中,$ t $是扭转标量,而$ t_g $是高斯 - 骨网拓扑不变的术语的远程交通。众所周知的Noether对称方法是选择以基本层面动机并确定给定Lagrangian的精确解决方案的模型的有用工具,因此,我们探索了$ f(t,t_g)$ f(t_g)$ feverity形式主义的noether对称方法,具有三种不同形式的$ f(t,t_g)$的形式,并研究了如何为每种形式建立一个非trivial vector vector形式。我们扩展了\ cite {capozziello2016noether}的分析,以表$ f(t,t,t_ {g})= b_ {0} t_ {0} t_ {g}^{g}+t_}+t_ {0} t_ {0} t^{m} $ conterne conterne conterne conterne conterne conterne conterne conterne contepar equus conternt contepar telepar telepar contront intepar equartent tepar tepar tepar tepar tement intert tepar contronn tement,高斯式术语的远程等效词的指数形式。我们已经表明,这三种情况将使我们能够获得非平凡的Noether载体,这将发挥重要作用,以获得宇宙学方程的确切解决方案。
All degrees of freedom related to the torsion scalar can be explored by analysing, the $f(T,T_G)$ gravity formalism where, $T$ is a torsion scalar and $T_G$ is the teleparallel counterpart of the Gauss-Bonnet topological invariant term. The well-known Noether symmetry approach is a useful tool for selecting models that are motivated at a fundamental level and determining the exact solution to a given Lagrangian, hence we explore Noether symmetry approach in $f(T,T_G)$ gravity formalism with three different forms of $f(T,T_G)$ and study how to establish nontrivial Noether vector form for each one of them. We extend the analysis made in \cite{capozziello2016noether} for the form $f(T,T_{G})=b_{0}T_{G}^{k}+t_{0}T^{m}$ and discussed the symmetry for this model with linear teleparallel equivalent of the Gauss-Bonnet term, followed by the study of two models containing exponential form of the teleparallel equivalent of the Gauss-Bonnet term. We have shown that all three cases will allow us to obtain non-trivial Noether vector which will play an important role to obtain the exact solutions for the cosmological equations.