论文标题

分叉路径:达西量表上优先流分叉,空白和曲折之间的关系

Bifurcating-Paths: the relation between preferential flow bifurcations, void, and tortuosity on the Darcy scale

论文作者

Dagan, Avioz, Edery, Yaniv

论文摘要

近年来,由于多孔培养基电导率布局的均匀性或异质性,多孔介质中的Darcy量表的运输被特征为Fickian或非菲奇人。然而,有证据表明,优先流动,表明运输发生在异质和同质案例中。我们使用从同质到异质的2D电导率场对达西量表转运进行建模,并发现这些优先流分叉,在形成曲折路径时不会入侵的空隙。分叉的比例降低了下流并达到渐近值,该值缩放为具有异质性水平的幂律。我们表明,对于具有相同的异质性水平的空隙分数,曲目和分形维度分析,出现分叉对异质性水平的相同幂律缩放。我们得出的结论是,异质性的缩放是优先流量几何形状的主要特征,这将导致运输的加权时间变化,并最终导致异常运输。

In recent years, Darcy scale transport in porous media was characterized to be Fickian or non-Fickian due to the homogeneity or heterogeneity of the porous medium conductivity layout. Yet, evidence shows that preferential flows that funnel the transport occur in heterogeneous and homogenous cases. We model the Darcy scale transport using a 2D conductivity field ranging from homogenous to heterogeneous and find that these preferential flows bifurcate, leaving voids where particles do not invade while forming a tortuous path. The fraction of bifurcations decreases downflow and reaches an asymptotical value, which scales as a power-law with the heterogeneity level. We show that the same power-law scaling of the bifurcations to heterogeneity level appears for the void fraction, tortuosity, and fractal dimension analysis with the same heterogeneity level. We conclude that the scaling with the heterogeneity is the dominant feature in the preferential flow geometry, which will lead to variations in weighting times for the transport and eventually to anomalous transport.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源