论文标题
量子后零知识,并结合空间模拟
Post-Quantum Zero-Knowledge with Space-Bounded Simulation
论文作者
论文摘要
量子零知识的传统定义规定,交互式协议中任何量子多项式验证者获得的知识可以通过量子多项式时间算法模拟。该定义的一个缺点是,它允许模拟器比验证者更大的计算资源消耗。我们认为,这种缺点使量子零知识的现有概念对于某些设置不可行,尤其是在处理近期量子设备时。 在这项工作中,我们启动了量子后零知识的细粒度概念,该概念与近期量子设备更兼容。我们介绍了$(s,f)$空间量子零知识的概念。在这个新的概念中,我们要求可以通过量子多项式时间算法来模拟$ s $ qubit的恶意验证符,该算法最多使用$ f(s)$ - Qubits,用于某些功能$ f(\ cdot)$,并且对验证者或模拟器所消耗的经典记忆量无限制。我们探讨了这一概念并建立了积极和负面的结果: - 对于具有对数量子空间$ s $和(任意)多项式古典空间的验证者,我们表明$(s,f)$ - 由太空QZK,对于$ f(s)= 2S $,可以根据Quant-Qualtum Qualtem of Qualtum One-One-Way功能的存在来实现。此外,我们的协议以恒定的回合运行。 - 对于具有超级量子量子空间$ s $的验证者,假设存在量子后安全的单向函数,我们表明$(S,f)$ - 由空间符合空间的QZK协议,具有完全黑盒模拟(Black-box模拟的经典模拟)仅在BQP中用于语言。
The traditional definition of quantum zero-knowledge stipulates that the knowledge gained by any quantum polynomial-time verifier in an interactive protocol can be simulated by a quantum polynomial-time algorithm. One drawback of this definition is that it allows the simulator to consume significantly more computational resources than the verifier. We argue that this drawback renders the existing notion of quantum zero-knowledge not viable for certain settings, especially when dealing with near-term quantum devices. In this work, we initiate a fine-grained notion of post-quantum zero-knowledge that is more compatible with near-term quantum devices. We introduce the notion of $(s,f)$ space-bounded quantum zero-knowledge. In this new notion, we require that an $s$-qubit malicious verifier can be simulated by a quantum polynomial-time algorithm that uses at most $f(s)$-qubits, for some function $f(\cdot)$, and no restriction on the amount of the classical memory consumed by either the verifier or the simulator. We explore this notion and establish both positive and negative results: - For verifiers with logarithmic quantum space $s$ and (arbitrary) polynomial classical space, we show that $(s,f)$-space-bounded QZK, for $f(s)=2s$, can be achieved based on the existence of post-quantum one-way functions. Moreover, our protocol runs in constant rounds. - For verifiers with super-logarithmic quantum space $s$, assuming the existence of post-quantum secure one-way functions, we show that $(s,f)$-space-bounded QZK protocols, with fully black-box simulation (classical analogue of black-box simulation) can only be achieved for languages in BQP.