论文标题
量子时空的RICCI流动中的低能量时量子修饰的重力
Quantum Modified Gravity at Low Energy in the Ricci Flow of Quantum Spacetime
论文作者
论文摘要
物理参考框架的量子处理导致量子时空的RICCI流动,这是重力的量子和重新归一化效应的相当刚性框架。该理论的特征能量表由独特的常数描述:宇宙的临界密度。在低能量长距离(宇宙或银河系)尺度上,该理论修饰了爱因斯坦的重力,这自然会导致宇宙常数作为RICCI流动在领先顺序和有效量表依赖于Einstein-Hilbert的作用的反术语。在弱和静态重力限制中,该框架从牛顿重力产生了过渡趋势,并且与特征量表周围的修改后的牛顿动力学(MOND)相似。当局部曲率较大时,牛顿重力将回收。当局部曲率足够低以与对应于特征能量表的渐近背景曲率相当时,过渡趋势会产生Baryonic Tully-Fisher关系。对于背景曲率周围的中间通用曲率,插值拉格朗日功能产生的过渡趋势与观察到的星系的径向加速度关系。当重型物质密度远低于银河系郊区的临界密度时,可能会有与宇宙加速扩张相对应的通用“加速地板”,这在其深处限制上与Mond不同。 MOND引入的临界加速度常数$ A_0 $与该理论的低特征能量表有关。宇宙常数为IT提供了普遍的领先顺序贡献,流动效应给出了下一个阶尺度量表的贡献,这等效地诱导了该理论的“冷暗物质”。当“暗物质”大约是男性物质的5倍时,$ A_0 $与Galaxian数据一致。
Quantum treatment of physical reference frame leads to the Ricci flow of quantum spacetime, which is a quite rigid framework to quantum and renormalization effect of gravity. The theory has a low characteristic energy scale described by a unique constant: the critical density of the universe. At low energy long distance (cosmic or galactic) scale, the theory modifies Einstein's gravity which naturally gives rise to a cosmological constant as a counter term of the Ricci flow at leading order and an effective scale dependent Einstein-Hilbert action. In the weak and static gravity limit, the framework gives rise to a transition trend away from Newtonian gravity and similar to the MOdified Newtonian Dynamics (MOND) around the characteristic scale. When local curvature is large, Newtonian gravity is recovered. When local curvature is low enough to be comparable with the asymptotic background curvature corresponding to the characteristic energy scale, the transition trend produces the baryonic Tully-Fisher relation. For intermediate general curvature around the background curvature, the interpolating Lagrangian function yields a similar transition trend to the observed radial acceleration relation of galaxies. When the baryonic matter density is much lower than the critical density at the outskirt of a galaxy, there may be a universal "acceleration floor" corresponding to the acceleration expansion of the universe, which differs from MOND at its deep-MOND limit. The critical acceleration constant $a_0$ introduced in MOND is related to the low characteristic energy scale of the theory. The cosmological constant gives a universal leading order contribution to it and the flow effect gives the next order scale dependent contribution, which equivalently induces the "cold dark matter" to the theory. $a_0$ is consistent with galaxian data when the "dark matter" is about 5 times the baryonic matter.