论文标题

双重泡沫,辛劳和麻烦:通过传播增强认证的鲁棒性

Double Bubble, Toil and Trouble: Enhancing Certified Robustness through Transitivity

论文作者

Cullen, Andrew C., Montague, Paul, Liu, Shijie, Erfani, Sarah M., Rubinstein, Benjamin I. P.

论文摘要

为了响应微妙的对抗性示例翻转神经网络模型的分类,最近的研究促进了认证的鲁棒性作为解决方案。在那里,通过网络输入的随机平滑来实现对所有规范攻击的预测不变性。当今的最先进的认证可以在测试的输入实例中进行最佳使用类输出分数:只有在这些分数下,就不可能使用更好的认证半径(在$ L_2 $规范下)。但是,对于是否可以使用正在测试的实例周围的局部信息来改善此类下限是一个空旷的问题。在这项工作中,我们演示了如何通过利用认证的传递性和输入空间的几何形状来改善当今的“最佳”证书,从而产生了我们所说的几何认证认证的鲁棒性。通过考虑到一组认证边界上点的最小距离,该方法可以将认证提高超过$ 80 \%$ $ $ $的小型imagenet实例,平均相关认证的平均$ 5 \%$ $。在整合增强经过认证半径的训练时间过程时,我们的技术显示出更具希望的结果,均匀的$ 4 $ $ $ $ $ $ $ $ 4 $ $ $ 4 $ $ $ 4 $ $ $ 4 $ $ $ 4 $ $ $ 4 $ $ 4。

In response to subtle adversarial examples flipping classifications of neural network models, recent research has promoted certified robustness as a solution. There, invariance of predictions to all norm-bounded attacks is achieved through randomised smoothing of network inputs. Today's state-of-the-art certifications make optimal use of the class output scores at the input instance under test: no better radius of certification (under the $L_2$ norm) is possible given only these score. However, it is an open question as to whether such lower bounds can be improved using local information around the instance under test. In this work, we demonstrate how today's "optimal" certificates can be improved by exploiting both the transitivity of certifications, and the geometry of the input space, giving rise to what we term Geometrically-Informed Certified Robustness. By considering the smallest distance to points on the boundary of a set of certifications this approach improves certifications for more than $80\%$ of Tiny-Imagenet instances, yielding an on average $5 \%$ increase in the associated certification. When incorporating training time processes that enhance the certified radius, our technique shows even more promising results, with a uniform $4$ percentage point increase in the achieved certified radius.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源