论文标题
自validated物理 - 安装网络:逆建模的一般框架
Self-Validated Physics-Embedding Network: A General Framework for Inverse Modelling
论文作者
论文摘要
基于物理学的反向建模技术通常仅限于特定的研究领域,而流行的基于机器学习的技术过于数据依赖性,无法保证解决方案的物理兼容性。在本文中,提出了用于反向建模的一般神经网络框架自验证的物理嵌入网络(SVPEN)。顾名思义,嵌入式物理前进模型可确保任何成功通过其验证的解决方案在物理上都是合理的。 SVPEN以两种模式运行:(a)逆函数模式提供了作为常规监督学习的快速状态估计,并且(b)优化模式为迭代正确正确的估计提供了一种方法,使验证过程失败。此外,优化模式为SVPEN提供了可重构性,即,替换了诸如神经网络,物理模型之类的组件,并随意替换了错误计算,以解决一系列不同的逆问题而无需预处理。在两个高度非线性和完全不同的应用中进行了十多个案例研究:分子吸收光谱和涡轮曲循环分析,证明了SVPEN的通用性,物理可靠性和可重配性。更重要的是,SVPEN为在AI的背景下使用现有的物理模型提供了坚实的基础,以在数据驱动和物理驱动的模型之间达到平衡。
Physics-based inverse modeling techniques are typically restricted to particular research fields, whereas popular machine-learning-based ones are too data-dependent to guarantee the physical compatibility of the solution. In this paper, Self-Validated Physics-Embedding Network (SVPEN), a general neural network framework for inverse modeling is proposed. As its name suggests, the embedded physical forward model ensures that any solution that successfully passes its validation is physically reasonable. SVPEN operates in two modes: (a) the inverse function mode offers rapid state estimation as conventional supervised learning, and (b) the optimization mode offers a way to iteratively correct estimations that fail the validation process. Furthermore, the optimization mode provides SVPEN with reconfigurability i.e., replacing components like neural networks, physical models, and error calculations at will to solve a series of distinct inverse problems without pretraining. More than ten case studies in two highly nonlinear and entirely distinct applications: molecular absorption spectroscopy and Turbofan cycle analysis, demonstrate the generality, physical reliability, and reconfigurability of SVPEN. More importantly, SVPEN offers a solid foundation to use existing physical models within the context of AI, so as to striking a balance between data-driven and physics-driven models.