论文标题
新的黑洞解决方案,具有无纹状性非对象张量的公制重力
New black hole solutions with a dynamical traceless nonmetricity tensor in Metric-Affine Gravity
论文作者
论文摘要
在公制植入重力的框架中,爱因斯坦张量与一般相对性提供的物质的能量量张量之间的现有对应关系扩展到扭转和非中型场上的riemannian后描述,这些描述是由旋转,扩张和物质的自旋,扩张和剪切液来源的。在这项工作中,我们着重于非赞誉张量的无纹状体部分的动态作用及其与剪切物的内在连接,定义了一个模型,该模型封闭了带有剪切电荷的新的黑洞解决方案。我们表明,在存在动力扭转和Weyl载体的情况下的延伸导致迄今为止旋转,扩张和剪切电荷的最广泛的静态和球形对称的黑洞溶液,到目前为止,施加量。
In the framework of Metric-Affine Gravity, the existing correspondence between the Einstein tensor and the energy-momentum tensor of matter provided by General Relativity is extended towards a post-Riemannian description in terms of the torsion and nonmetricity fields, which are sourced by the spin, dilation and shear currents of matter. In this work, we focus on the dynamical role of the traceless part of the nonmetricity tensor and its intrinsic connection with shears, defining a model which encloses a new black hole solution endowed with shear charges. We show that the extension in the presence of dynamical torsion and Weyl vector leads to the broadest family of static and spherically symmetric black hole solutions with spin, dilation and shear charges in Metric-Affine Gravity so far.