论文标题
从离散观察中学习均匀线性ode系统中的可识别性和渐近学
Identifiability and Asymptotics in Learning Homogeneous Linear ODE Systems from Discrete Observations
论文作者
论文摘要
普通的微分方程(ODE)最近在机器学习中引起了很多关注。但是,理论方面,例如统计估计的可识别性和渐近性能仍然晦涩难懂。本文从单个轨迹采样的一系列相同的无误差观测值中得出了足够的条件,可以从均匀间隔的无误差观测值中识别均质线性ode系统。当观察结果受到测量噪声的干扰时,我们证明在轻度条件下,基于非线性最小二乘(NLS)方法的参数估计器是一致的,并且渐近静电量为$ n^{ - 1/2} $收敛速率。基于渐近正常性属性,我们为未知系统参数构建置信集,并提出了一种推断ODE系统因果结构的新方法,即推断系统变量之间是否存在因果关系。此外,我们将结果扩展到降解的观测值,包括汇总和时间量表。据我们所知,我们的工作是对学习线性ode系统中的可识别性和渐近特性的首次系统研究。我们还构建具有各种系统维度的模拟,以说明既定的理论结果。
Ordinary Differential Equations (ODEs) have recently gained a lot of attention in machine learning. However, the theoretical aspects, e.g., identifiability and asymptotic properties of statistical estimation are still obscure. This paper derives a sufficient condition for the identifiability of homogeneous linear ODE systems from a sequence of equally-spaced error-free observations sampled from a single trajectory. When observations are disturbed by measurement noise, we prove that under mild conditions, the parameter estimator based on the Nonlinear Least Squares (NLS) method is consistent and asymptotic normal with $n^{-1/2}$ convergence rate. Based on the asymptotic normality property, we construct confidence sets for the unknown system parameters and propose a new method to infer the causal structure of the ODE system, i.e., inferring whether there is a causal link between system variables. Furthermore, we extend the results to degraded observations, including aggregated and time-scaled ones. To the best of our knowledge, our work is the first systematic study of the identifiability and asymptotic properties in learning linear ODE systems. We also construct simulations with various system dimensions to illustrate the established theoretical results.