论文标题
自我监督的均等正规化调解多个实例学习:联合引用的糖尿病性视网膜病变分类和病变细分
Self-Supervised Equivariant Regularization Reconciles Multiple Instance Learning: Joint Referable Diabetic Retinopathy Classification and Lesion Segmentation
论文作者
论文摘要
病变的外观是医疗提供者将引用糖尿病性视网膜病(RDR)与不可介绍的DR区分开的关键线索。大多数现有的大型DR数据集仅包含图像级标签,而不是基于像素的注释。这促使我们开发算法通过图像级标签对RDR和细分病变进行分类。本文利用自我监督的等效学习和基于注意力的多企业学习(MIL)来解决这个问题。 MIL是区分积极和负面实例的有效策略,帮助我们放弃背景区域(负面实例),同时将病变区域(阳性区域)定位。但是,MIL仅提供粗病变定位,无法区分位于相邻斑块的病变。相反,自我监管的eproivariant注意机制(SEAM)生成了分割级别的类激活图(CAM),可以更准确地指导病变的补丁提取。我们的工作旨在整合这两种方法以提高RDR分类精度。我们在EyePACS数据集上进行了广泛的验证实验,在接收器操作特征曲线(AU ROC)下达到0.958的区域,表现优于当前最新算法。
Lesion appearance is a crucial clue for medical providers to distinguish referable diabetic retinopathy (rDR) from non-referable DR. Most existing large-scale DR datasets contain only image-level labels rather than pixel-based annotations. This motivates us to develop algorithms to classify rDR and segment lesions via image-level labels. This paper leverages self-supervised equivariant learning and attention-based multi-instance learning (MIL) to tackle this problem. MIL is an effective strategy to differentiate positive and negative instances, helping us discard background regions (negative instances) while localizing lesion regions (positive ones). However, MIL only provides coarse lesion localization and cannot distinguish lesions located across adjacent patches. Conversely, a self-supervised equivariant attention mechanism (SEAM) generates a segmentation-level class activation map (CAM) that can guide patch extraction of lesions more accurately. Our work aims at integrating both methods to improve rDR classification accuracy. We conduct extensive validation experiments on the Eyepacs dataset, achieving an area under the receiver operating characteristic curve (AU ROC) of 0.958, outperforming current state-of-the-art algorithms.