论文标题

MEC网络中具有多模型变压器的多元时间序列流行预测

Multi-Content Time-Series Popularity Prediction with Multiple-Model Transformers in MEC Networks

论文作者

HajiAkhondi-Meybodi, Zohreh, Mohammadi, Arash, Hou, Ming, Rahimian, Elahe, Heidarian, Shahin, Abouei, Jamshid, Plataniotis, Konstantinos N.

论文摘要

移动边缘缓存(MEC)中的编码/未编码内容位置已进化为有效的解决方案,通过增强存储缓存节点的内容多样性来满足全球移动数据流量的显着增长。为了满足多媒体内容历史请求模式的动态性质,最近研究的主要重点已转移到开发数据驱动和实时的缓存方案。在这方面,并假设用户的偏好在短范围内保持不变,因此Top-K流行内容被确定为学习模型的输出。但是,大多数现有的DataDriven流行度预测模型不适用于编码/未编码的内容放置框架。一方面,在编码/未编码的内容放置中,除了将内容分类为两组,即流行和非广泛性之外,内容请求的概率还需要确定应部分/完全存储的内容,其中此信息不提供现有数据驱动的流行性预测模型。另一方面,用户偏好在短范围内保持不变的假设仅适用于具有平滑请求模式的内容。为了应对这些挑战,我们开发了具有较高泛化能力的多模型(混合)基于变压器的边缘缓存(MTEC)框架,适用于具有不同时间变化行为的各种类型的内容,可以通过编码/未编码的内容放置框架进行调整。模拟结果证实了所提出的MTEC缓存框架的有效性与其同行相比,从缓存的比率,分类准确性和传输的字节量。

Coded/uncoded content placement in Mobile Edge Caching (MEC) has evolved as an efficient solution to meet the significant growth of global mobile data traffic by boosting the content diversity in the storage of caching nodes. To meet the dynamic nature of the historical request pattern of multimedia contents, the main focus of recent researches has been shifted to develop data-driven and real-time caching schemes. In this regard and with the assumption that users' preferences remain unchanged over a short horizon, the Top-K popular contents are identified as the output of the learning model. Most existing datadriven popularity prediction models, however, are not suitable for the coded/uncoded content placement frameworks. On the one hand, in coded/uncoded content placement, in addition to classifying contents into two groups, i.e., popular and nonpopular, the probability of content request is required to identify which content should be stored partially/completely, where this information is not provided by existing data-driven popularity prediction models. On the other hand, the assumption that users' preferences remain unchanged over a short horizon only works for content with a smooth request pattern. To tackle these challenges, we develop a Multiple-model (hybrid) Transformer-based Edge Caching (MTEC) framework with higher generalization ability, suitable for various types of content with different time-varying behavior, that can be adapted with coded/uncoded content placement frameworks. Simulation results corroborate the effectiveness of the proposed MTEC caching framework in comparison to its counterparts in terms of the cache-hit ratio, classification accuracy, and the transferred byte volume.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源