论文标题
保形圆圈和局部差异性
Conformal Circles and Local Diffeomorphisms
论文作者
论文摘要
我们研究未参数的共形圆,或称为共形大地测量学,研究的差异形态绘制了共形圆圈以在伪里曼尼亚人的形成式歧管中的共形圆圈。我们表明,这种局部差异性是保形的局部差异性。我们的结果扩大了Yano和Tomonaga的结果。我们还为我们对庞加莱 - 因斯坦歧管的结果提供了全息解释。证据采用合成圆的适当变化。
We study unparametrized conformal circles, or called conformal geodesics, study diffeomorphisms mapping conformal circles to conformal circles in pseudo-Riemannian conformal manifolds. We show that such local diffeomorphisms are conformal local diffeomorphisms. Our result extends the result of Yano and Tomonaga. We also present a holographic interpretation for our result on Poincaré-Einstein manifolds. The proofs take suitable variations of conformal circles.