论文标题
流气:使用快速响应热流传感器对无人机上的风估计和阵阵排斥
FlowDrone: Wind Estimation and Gust Rejection on UAVs Using Fast-Response Hot-Wire Flow Sensors
论文作者
论文摘要
无人驾驶飞机(UAV)正在发现在越来越强调外部干扰(包括极风)的应用中使用的用途。但是,传统的多电流无人机平台不会直接感知风。常规的流动传感器太慢,不敏感或笨重,无法在无人机上进行广泛集成。相反,无人机通常通过位置或轨迹跟踪中的累积错误间接观察风的影响。在这项工作中,我们将基于微电机电系统(MEMS)热线技术的新型流动传感器整合到了先前的工作中,以供多电动无人机进行风能估算。这些传感器是全向,轻巧,快速和准确的。为了在大风条件下实现卓越的跟踪性能,我们通过使用模拟的风阵及其对无人机的空气动力学效应来训练“风吸引”基于残留的基于残留的控制器。在广泛的硬件实验中,我们证明了风吸收控制器在挑战性的有风条件下优于两个强大的“风脉”基线控制器。请参阅:https://youtu.be/kwqkh9z-338。
Unmanned aerial vehicles (UAVs) are finding use in applications that place increasing emphasis on robustness to external disturbances including extreme wind. However, traditional multirotor UAV platforms do not directly sense wind; conventional flow sensors are too slow, insensitive, or bulky for widespread integration on UAVs. Instead, drones typically observe the effects of wind indirectly through accumulated errors in position or trajectory tracking. In this work, we integrate a novel flow sensor based on micro-electro-mechanical systems (MEMS) hot-wire technology developed in our prior work onto a multirotor UAV for wind estimation. These sensors are omnidirectional, lightweight, fast, and accurate. In order to achieve superior tracking performance in windy conditions, we train a `wind-aware' residual-based controller via reinforcement learning using simulated wind gusts and their aerodynamic effects on the drone. In extensive hardware experiments, we demonstrate the wind-aware controller outperforming two strong `wind-unaware' baseline controllers in challenging windy conditions. See: https://youtu.be/KWqkH9Z-338.