论文标题

使用空间融合的套索和山脊惩罚对非机构极端依赖的灵活建模

Flexible Modeling of Nonstationary Extremal Dependence using Spatially-Fused LASSO and Ridge Penalties

论文作者

Shao, Xuanjie, Hazra, Arnab, Richards, Jordan, Huser, Raphaël

论文摘要

非机构空间极端依赖结构的统计模型具有挑战性。最大稳定过程是建模空间索引的块最大值的常见选择,在该块中,平稳性的假设通常是使推理可行的。但是,对于在大型或复杂域上观察到的数据通常是不现实的。我们提出了一种计算效率的方法,该方法通过利用非平稳性内核卷积,使用全球非平稳但本地,最大稳定的过程来估算极端依赖性。我们将空间域分为一个子区域的细网格,分配每个域的依赖性参数,并使用lasso($ l_1 $)或ridge($ l_2 $)惩罚来获得空间平滑的参数参数估计。然后,我们开发了一种新型的数据驱动算法来合并均匀的相邻子区域。该算法促进了模型的简约性和解释性。为了使我们的模型适用于高维数据,我们利用成对的可能性来提出推论并讨论计算和统计效率。一项广泛的仿真研究表明,我们提出的模型的出色性能以及分区 - 合并算法在未建模非平稳性或不更新域分区的方法上。我们将提出的方法应用于尼泊尔以及周围的喜马拉雅山脉和亚马里亚山脉地区的1400多个地点的月度最高温度来建模;与固定过程和非平稳过程相比,我们再次观察到模型拟合度的显着改善,而没有子区域合并。此外,我们证明了估计的合并分区可以从地理角度来解释,并通过充分减少次区域特异性参数的数量来提供更好的模型诊断。

Statistical modeling of a nonstationary spatial extremal dependence structure is challenging. Max-stable processes are common choices for modeling spatially-indexed block maxima, where an assumption of stationarity is usual to make inference feasible. However, this assumption is often unrealistic for data observed over a large or complex domain. We propose a computationally-efficient method for estimating extremal dependence using a globally nonstationary, but locally-stationary, max-stable process by exploiting nonstationary kernel convolutions. We divide the spatial domain into a fine grid of subregions, assign each of them its own dependence parameters, and use LASSO ($L_1$) or ridge ($L_2$) penalties to obtain spatially-smooth parameter estimates. We then develop a novel data-driven algorithm to merge homogeneous neighboring subregions. The algorithm facilitates model parsimony and interpretability. To make our model suitable for high-dimensional data, we exploit a pairwise likelihood to draw inferences and discuss computational and statistical efficiency. An extensive simulation study demonstrates the superior performance of our proposed model and the subregion-merging algorithm over the approaches that either do not model nonstationarity or do not update the domain partition. We apply our proposed method to model monthly maximum temperatures at over 1400 sites in Nepal and the surrounding Himalayan and sub-Himalayan regions; we again observe significant improvements in model fit compared to a stationary process and a nonstationary process without subregion-merging. Furthermore, we demonstrate that the estimated merged partition is interpretable from a geographic perspective and leads to better model diagnostics by adequately reducing the number of subregion-specific parameters.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源