论文标题
多个麦克风阵列和声源定位的基于图形猛击的关节校准的可观察性分析
Observability Analysis of Graph SLAM-Based Joint Calibration of Multiple Microphone Arrays and Sound Source Localization
论文作者
论文摘要
多个麦克风阵列在机器人试镜中有许多应用,包括声源定位,音频场景感知和分析等。但是,多个麦克风阵列的准确校准仍然是一个挑战,因为要识别许多未知参数,包括欧拉角,几何,几何,几何,麦克风阵列之间的异步因子。本文涉及使用图形同时定位和映射(SLAM)对多个麦克风阵列的关节校准和声源定位。通过使用Fisher信息矩阵(FIM)方法,我们将重点放在上述校准问题的图形大满贯框架的可观察性分析上。我们彻底研究了未知参数的可识别性,包括欧拉角,几何形状,麦克风阵列之间的异步效应和声源位置。我们建立了FIM和Jacobian矩阵具有完整列等级的必要条件,这意味着未知参数的可识别性。这些条件与声源运动和麦克风阵列的配置的变化密切相关,并且具有直观和物理的解释。我们还发现了几种未知参数无法识别的情况。使用仿真数据证明了所有理论发现。
Multiple microphone arrays have many applications in robot audition, including sound source localization, audio scene perception and analysis, etc. However, accurate calibration of multiple microphone arrays remains a challenge because there are many unknown parameters to be identified, including the Euler angles, geometry, asynchronous factors between the microphone arrays. This paper is concerned with joint calibration of multiple microphone arrays and sound source localization using graph simultaneous localization and mapping (SLAM). By using a Fisher information matrix (FIM) approach, we focus on the observability analysis of the graph SLAM framework for the above-mentioned calibration problem. We thoroughly investigate the identifiability of the unknown parameters, including the Euler angles, geometry, asynchronous effects between the microphone arrays, and the sound source locations. We establish necessary/sufficient conditions under which the FIM and the Jacobian matrix have full column rank, which implies the identifiability of the unknown parameters. These conditions are closely related to the variation in the motion of the sound source and the configuration of microphone arrays, and have intuitive and physical interpretations. We also discover several scenarios where the unknown parameters are not uniquely identifiable. All theoretical findings are demonstrated using simulation data.