论文标题

来自燃气驱动的行星迁移和谐振链破裂的系外行星半径谷

The Exoplanet Radius Valley from Gas-driven Planet Migration and Breaking of Resonant Chains

论文作者

Izidoro, Andre, Schlichting, Hilke E., Isella, Andrea, Dasgupta, Rajdeep, Zimmermann, Christian, Bitsch, Bertram

论文摘要

外部半径在1至4 $ r _ {\ oplus} $之间的尺寸频率分布是双峰的,峰值为$ \ sim $ \ sim $ 1.4 $ r _ {\ oplus} $和$ \ sim $ \ sim $ 2.4 $ r _ {\ oplus} $,以及$ \ sim $ 1.8 $ 1.8 $ 1.8 $ 1.8 $ 1.8 $ 1.8 $ 1.8 $ 1.8 $ 1.8 $ 1.8 $ 1.8 $ 1.8 $ 1.8 r.这个半径谷将两类行星分开 - 通常称为“超级地球”和“迷你北极河” - 其起源仍然在争论。一个模型提出,超级毕业生是光蒸发或核心驱动的质量损失的结果,剥夺了迷你北极群的原始大气。一种对比模型将半径谷解释为散装构图中的二分法,在该二分法中,超级地球是岩石的行星,而迷你北极人是富含水冰的世界。在这项工作中,我们测试迁移模型是否与半径谷及其如何区分这些观点一致。在迁移模型中,行星向磁盘内边缘迁移,形成了锁定在谐振配置中的行星链。气盘扩散后,轨道不稳定性“打破了链条”并促进较晚的碰撞。该模型广泛地匹配开普勒行星的周期比率和行星 - 型分布,并说明了诸如Trappist-1,Kepler-223和TOI-178之类的共振链。在这里,通过将行星形成模拟的结果与组成的质量 - 拉迪乌斯关系结合在一起,并假设晚期巨型影响的原始H充满H-富含H-富含H的气氛的完全丧失,我们表明迁移模型是keplerites the exoplanet Radius Valley和外部系统均匀性的外生期Radius valley和内部系统均匀性(“ Peas-In-a-a-a-a-a-a-planets”)。我们的结果表明,尺寸为$ \ sim $ 1.4 $ r _ {\ oplus} $的行星主要是岩石,而那些尺寸为$ \ sim $ 2.4 $ r _ {\ oplus} $的行星主要是富裕的世界。我们的结果不支持一个小型核心核心的岩石组成。

The size frequency distribution of exoplanet radii between 1 and 4$R_{\oplus}$ is bimodal with peaks at $\sim$1.4 $R_{\oplus}$ and $\sim$2.4 $R_{\oplus}$, and a valley at $\sim$1.8$R_{\oplus}$. This radius valley separates two classes of planets -- usually referred to as "super-Earths" and "mini-Neptunes" -- and its origin remains debated. One model proposes that super-Earths are the outcome of photo-evaporation or core-powered mass-loss stripping the primordial atmospheres of the mini-Neptunes. A contrasting model interprets the radius valley as a dichotomy in the bulk compositions, where super-Earths are rocky planets and mini-Neptunes are water-ice rich worlds. In this work, we test whether the migration model is consistent with the radius valley and how it distinguishes these views. In the migration model, planets migrate towards the disk inner edge forming a chain of planets locked in resonant configurations. After the gas disk dispersal, orbital instabilities "break the chains" and promote late collisions. This model broadly matches the period-ratio and planet-multiplicity distributions of Kepler planets, and accounts for resonant chains such as TRAPPIST-1, Kepler-223, and TOI-178. Here, by combining the outcome of planet formation simulations with compositional mass-radius relationships, and assuming complete loss of primordial H-rich atmospheres in late giant-impacts, we show that the migration model accounts for the exoplanet radius valley and the intra-system uniformity ("peas-in-a-pod") of Kepler planets. Our results suggest that planets with sizes of $\sim$1.4 $R_{\oplus}$ are mostly rocky, whereas those with sizes of $\sim$2.4 $R_{\oplus}$ are mostly water-ice rich worlds. Our results do not support an exclusively rocky composition for the cores of mini-Neptunes.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源