论文标题
部分可观测时空混沌系统的无模型预测
The non-autonomous Navier-Stokes-Brinkman-Forchheimer equation with Dirichlet boundary conditions: dissipativity, regularity, and attractors
论文作者
论文摘要
我们对具有迪里奇特边界条件和非自主外力的有界域中的3D Navier-Stokes-Stokes-Stokes-brinkman-Forchheimer方程进行了全面研究。这项研究包括与弱解决方案的规律性,它们在较高能量空间中的耗散性以及相应统一吸引子的存在有关的问题
We give a comprehensive study of the 3D Navier-Stokes-Brinkman-Forchheimer equations in a bounded domain endowed with the Dirichlet boundary conditions and non-autonomous external forces. This study includes the questions related with the regularity of weak solutions, their dissipativity in higher energy spaces and the existence of the corresponding uniform attractors