论文标题

部分可观测时空混沌系统的无模型预测

A logical limit law for $231$-avoiding permutations

论文作者

Albert, Michael, Bouvel, Mathilde, Féray, Valentin, Noy, Marc

论文摘要

我们证明,避免231级的排列能够满足逻辑上限定律,即,对于任何一阶句子$ψ$,用两个总订单的语言,概率$ p_ {n,ψ} $,是均匀的随机231个随机231-避免231个避免的尺寸$ n $ n $ n $ n $ nimips $ψ$ aft limit as a in $ n $ n $ n $ n $ n lim n $ n $。此外,我们建立了有关$ p_ {n,ψ} $的行为和价值的进一步结果:(i)它要么远离$ 0 $,要么是快速衰减; (ii)一组可能的限制在$ [0,1] $中密集。我们的工具主要来自分析组合和奇异性分析。

We prove that the class of 231-avoiding permutations satisfies a logical limit law, i.e. that for any first-order sentence $Ψ$, in the language of two total orders, the probability $p_{n,Ψ}$ that a uniform random 231-avoiding permutation of size $n$ satisfies $Ψ$ admits a limit as $n$ is large. Moreover, we establish two further results about the behavior and value of $p_{n,Ψ}$: (i) it is either bounded away from $0$, or decays exponentially fast; (ii) the set of possible limits is dense in $[0,1]$. Our tools come mainly from analytic combinatorics and singularity analysis.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源