论文标题

在Quaternionic Essential数值范围内

On the convexity of the quaternionic essential numerical range

论文作者

Carvalho, Luís, Diogo, Cristina, Mendes, Sérgio, Soares, Helena

论文摘要

通常,季度设置中的数值范围是四季度的非凸子集。基本数值范围是对数值范围的改进,后者仅保留具有一定意义上无限多重性的元素。我们证明了Quaternionic Hilbert空间上有界线性算子的基本数值范围是凸。还提供了兰开斯特定理的四元素类似物,该类似物还提供了数值范围及其必需数值范围的关闭。

The numerical range in the quaternionic setting is, in general, a non convex subset of the quaternions. The essential numerical range is a refinement of the numerical range that only keeps the elements that have, in a certain sense, infinite multiplicity. We prove that the essential numerical range of a bounded linear operator on a quaternionic Hilbert space is convex. A quaternionic analogue of Lancaster theorem, relating the closure of the numerical range and its essential numerical range, is also provided.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源