论文标题

Vificon:通过自学对比度学习的视觉和无线关联

ViFiCon: Vision and Wireless Association Via Self-Supervised Contrastive Learning

论文作者

Meegan, Nicholas, Liu, Hansi, Cao, Bryan, Alali, Abrar, Dana, Kristin, Gruteser, Marco, Jain, Shubham, Ashok, Ashwin

论文摘要

我们介绍了Vificon,这是一种自我监督的对比学习方案,该方案使用跨视觉和无线模式的同步信息来执行跨模式关联。具体而言,该系统使用从RGB-D摄像机录像中收集的行人数据以及从用户智能手机设备的WiFi良好时间测量(FTM)。我们通过将多人深度数据堆叠在带状图像中来表示时间序列。来自RGB-D(视觉域)的深度数据与可观察的行人固有地链接在一起,但是FTM数据(无线域)仅与网络上的智能手机相关联。为了将跨模式关联问题作为自我监督,该网络将两种模式的范围内借口学习作为借口任务,然后将学习的表示形式用于将单个边界框关联到特定智能手机的下游任务,即关联视力和无线信息。我们在摄像机镜头上使用预训练的区域提案模型,然后将推断的边界框信息和FTM数据一起馈送到双分支卷积神经网络中。我们表明,与完全有监督的SOTA模型相比,Vificon实现了高性能愿景到无线电话的关联,发现哪个边界框对应于哪种智能手机设备,而没有手工标记的关联示例用于培训数据。

We introduce ViFiCon, a self-supervised contrastive learning scheme which uses synchronized information across vision and wireless modalities to perform cross-modal association. Specifically, the system uses pedestrian data collected from RGB-D camera footage as well as WiFi Fine Time Measurements (FTM) from a user's smartphone device. We represent the temporal sequence by stacking multi-person depth data spatially within a banded image. Depth data from RGB-D (vision domain) is inherently linked with an observable pedestrian, but FTM data (wireless domain) is associated only to a smartphone on the network. To formulate the cross-modal association problem as self-supervised, the network learns a scene-wide synchronization of the two modalities as a pretext task, and then uses that learned representation for the downstream task of associating individual bounding boxes to specific smartphones, i.e. associating vision and wireless information. We use a pre-trained region proposal model on the camera footage and then feed the extrapolated bounding box information into a dual-branch convolutional neural network along with the FTM data. We show that compared to fully supervised SoTA models, ViFiCon achieves high performance vision-to-wireless association, finding which bounding box corresponds to which smartphone device, without hand-labeled association examples for training data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源