论文标题
通过Frechet Mean在GAN中找到全球语义表示
Finding the global semantic representation in GAN through Frechet Mean
论文作者
论文摘要
理想的甘恩(GAN)脱离潜在空间涉及具有语义属性坐标的潜在空间的全球表示。换句话说,考虑到这个脱离的潜在空间是矢量空间,存在每个基础组件描述生成图像的一个属性的全局语义基础。在本文中,我们提出了一种无监督的方法,用于在甘恩斯的中间潜在空间中找到这种全球语义基础。该语义基础代表了独立于样本的有意义的扰动,这些扰动会改变整个潜在空间上图像的相同语义属性。拟议的全球基础称为fréchet基础,是通过向潜在空间中局部语义扰动引入fréchet的含义来得出的。 Fréchet基础分为两个阶段。首先,全球语义子空间是由局部语义子空间的格拉曼尼亚流形中的弗雷奇(Fréchet)平均值发现的。其次,通过特殊正交组中的fréchet平均值优化语义子空间的基础,可以找到fréchet的基础。实验结果表明,与以前的方法相比,Fréchet基础提供了更好的语义分解和鲁棒性。此外,我们建议对先前方法的基础细化方案。定量实验表明,精制基础实现了更好的语义分解,同时限制了先前方法给出的相同语义子空间。
The ideally disentangled latent space in GAN involves the global representation of latent space with semantic attribute coordinates. In other words, considering that this disentangled latent space is a vector space, there exists the global semantic basis where each basis component describes one attribute of generated images. In this paper, we propose an unsupervised method for finding this global semantic basis in the intermediate latent space in GANs. This semantic basis represents sample-independent meaningful perturbations that change the same semantic attribute of an image on the entire latent space. The proposed global basis, called Fréchet basis, is derived by introducing Fréchet mean to the local semantic perturbations in a latent space. Fréchet basis is discovered in two stages. First, the global semantic subspace is discovered by the Fréchet mean in the Grassmannian manifold of the local semantic subspaces. Second, Fréchet basis is found by optimizing a basis of the semantic subspace via the Fréchet mean in the Special Orthogonal Group. Experimental results demonstrate that Fréchet basis provides better semantic factorization and robustness compared to the previous methods. Moreover, we suggest the basis refinement scheme for the previous methods. The quantitative experiments show that the refined basis achieves better semantic factorization while constrained on the same semantic subspace given by the previous method.