论文标题

磁铁:网状不可知神经PDE求解器

MAgNet: Mesh Agnostic Neural PDE Solver

论文作者

Boussif, Oussama, Assouline, Dan, Benabbou, Loubna, Bengio, Yoshua

论文摘要

随着分辨率的增加,用于求解部分微分方程(PDE)的经典数值方法的计算复杂性显着尺度。作为一个重要的例子,气候预测需要良好的时空分辨率,以解决流体模拟中的所有湍流量表。这使得即使使用现代超级计算机,也可以准确地计算这些量表的任务。结果,当前的数值建模器求解了太粗的网格(每侧3公里至200 km),这阻碍了预测的准确性和实用性。在本文中,我们利用了隐式神经表示(INR)的最新进展来设计一种新型架构,该结构可以预测给定空间位置查询的PDE的空间连续解。通过使用图神经网络(GNN)增强基于坐标的体系结构,我们可以将零弹性概括为新的非均匀网格和长期的长期预测,最多可以在物理上保持一致。我们的网状不可知论神经PDE求解器(磁铁)能够在各种PDE模拟数据集中进行准确的预测,并与现有基线相比。此外,磁力概括为不同的网格和分辨率,最多是接受培训的分辨率的四倍。

The computational complexity of classical numerical methods for solving Partial Differential Equations (PDE) scales significantly as the resolution increases. As an important example, climate predictions require fine spatio-temporal resolutions to resolve all turbulent scales in the fluid simulations. This makes the task of accurately resolving these scales computationally out of reach even with modern supercomputers. As a result, current numerical modelers solve PDEs on grids that are too coarse (3km to 200km on each side), which hinders the accuracy and usefulness of the predictions. In this paper, we leverage the recent advances in Implicit Neural Representations (INR) to design a novel architecture that predicts the spatially continuous solution of a PDE given a spatial position query. By augmenting coordinate-based architectures with Graph Neural Networks (GNN), we enable zero-shot generalization to new non-uniform meshes and long-term predictions up to 250 frames ahead that are physically consistent. Our Mesh Agnostic Neural PDE Solver (MAgNet) is able to make accurate predictions across a variety of PDE simulation datasets and compares favorably with existing baselines. Moreover, MAgNet generalizes well to different meshes and resolutions up to four times those trained on.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源